精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.

(1)填空:A点坐标为(),D点坐标为();
(2)若抛物线y= x2+bx+c经过C,D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.
(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣ ,顶点坐标是(﹣

【答案】
(1)﹣2;0;﹣2;3
(2)

解:∵抛物线y= x2+bx+c经过C(1,0),D(﹣2,3)代入,解得:b=﹣ ,c=

∴所求抛物线解析式为:y= x2 x+


(3)

解:答:存在.

∵当点M在抛物线对称轴的左侧或在抛物线的顶点时,仅当M,E重合时,它们的纵坐标相等.

∴EM不会与x轴平行,

当点M在抛物线的右侧时,

设抛物线向上平移H个单位能使EM∥x轴,

则平移后的抛物线的解析式为

∵y= (x﹣1)2+h,

∴抛物线与y轴交点E(0, +h),

∵抛物线的对称轴为:x=1,

根据抛物线的对称性,可知点M的坐标为(2, +h)时,直线EM∥x轴,

将(2, +h)代入y=x+2得 +h=2+2

解得:h=

∴抛物线向上平移 个单位能使EM∥x轴.


【解析】解:(1)A(﹣2,0),D(﹣2,3)
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示的格点纸中每个小正方形的边长均为1,以小正方形的顶点为圆心,2为半径做了一个扇形,用该扇形围成一个圆锥的侧面,针对此做法,小明和小亮通过计算得出以下结论:小明说此圆锥的侧面积为 π;小亮说此圆锥的弧长为 π,则下列结论正确的是(
A.只有小明对
B.只有小亮对
C.两人都对
D.两人都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=24 cm, BC=8 cm,点P从点A开始沿折线A-B-C-D4 cm/s的速度移动,点Q从点C开始沿CD边以2 cm/s的速度移动,如果点PQ分别从点AC同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为ts.t为何值时,四边形QPBC为矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读)|4﹣1|表示41差的绝对值,也可以理解为41两数在数轴上所对应的两点之间的距离;|4+1|可以看做|4﹣(﹣1)|,表示4与﹣1的差的绝对值,也可以理解为4与﹣1两数在数轴上所对应的两点间的距离.

(1)|4﹣(﹣1)|=   

(2)|5+2|=   

(3)利用数轴找出所有符合条件的整数x,使得|x+3|=5,则x=   

(4)利用数轴找出所有符合条件的整数x,使得|x+3|+|x﹣2|=5,这样的整数是:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】O为直线AB上一点,过点O作射线OC,使∠BOC=65°.将一直角三角板的直角顶点放在点O处.

(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=   

(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON=   CON=   

(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=5°,求∠AOM.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点ABC的三个顶点A,B,C都在格点上ABC绕点A按顺时针方向旋转90°得到AB′C′

1在正方形网格中,画出AB′C′;

2计算线段AB在变换到AB′的过程中扫过的区域的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.

(1)图b中,大正方形的边长是   .阴影部分小正方形的边长是   

(2)观察图b,写出(m+n2,(mn2mn之间的一个等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列材料,然后解答问题.

探究:用的幂的形式表示aman的结果(m、为正整数).

根据乘方的意义,aman==am+n

(1)请根据以上结论填空:36×38=   ,52×53×57=   ,(a+b)3(a+b)5=   

(2)仿照以上的分析过程,用的幂的形式表示(amn的结果(提示:将am看成一个整体).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y= (k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.
(1)求函数y= 的表达式,并直接写出E、F两点的坐标;
(2)求△AEF的面积.

查看答案和解析>>

同步练习册答案