精英家教网 > 初中数学 > 题目详情

【题目】(阅读)|4﹣1|表示41差的绝对值,也可以理解为41两数在数轴上所对应的两点之间的距离;|4+1|可以看做|4﹣(﹣1)|,表示4与﹣1的差的绝对值,也可以理解为4与﹣1两数在数轴上所对应的两点间的距离.

(1)|4﹣(﹣1)|=   

(2)|5+2|=   

(3)利用数轴找出所有符合条件的整数x,使得|x+3|=5,则x=   

(4)利用数轴找出所有符合条件的整数x,使得|x+3|+|x﹣2|=5,这样的整数是:   

【答案】(1)5;(2)7;(3)2或﹣8;(4)﹣3、﹣2、﹣1、0、1、2.

【解析】(1)根据4-1两数在数轴上所对应的两点之间的距离是5,可得结论.

(2)根据绝对值的意义即可得到结论;

(3)根据||x+3|=5表示x-3两数在数轴上所对应的两点之间的距离是5,可得结论.

(4)因为-32两数在数轴上所对应的两点之间的距离是5,所以使得|x+3|+|x-2|=5成立的整数是-32之间的所有整数(包括-32),据此求出这样的整数有哪些即可.

1)|4-(-1)|=5;

(2)|5+2|=7;

(3)|x+3|=5,

x+3=±5,

x=2-8,

(4)-32两数在数轴上所对应的两点之间的距离是5,

∴使得|x+3|+|x-2|=5成立的整数是-32之间的所有整数(包括-24),

∴这样的整数是-3、-2、-1、0、1、2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】骑自相车旅行越来越受到人们的喜爱,顺风车行经营的A型车2016年4月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售比去年增加400元,若今年4月份与去年4月份卖出的A型车数量相同,则今年4月份A型车销售总额将比去年4月份销售总额增加25%.
(1)求今年4月份A型车每辆销售价多少元(用列方程的方法解答);
(2)该车行计划5月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多? A、B两种型号车的进货和销售价格如表:

A型车

B型车

进货价格(元/辆)

1100

1400

销售价格(元/辆)

今年的销售价格

2400

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个Rt△DEF直角边DE落在AB上,过A点作射线AC与斜边EF平行,已知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)
(1)若点D与点B重合,当t=5时,连接QE,PF,此时△AQE为三角形、四边形QEFP为形;
(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止. ①如图①,若M为EF中点,当D、M、Q三点在同一直线上时,求t的值;
②在运动过程中,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切时,求运动时间t.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:(π﹣ 0+ +(﹣1)2013 tan60°;
(2)先化简,再求值:(a+3)2+a(4﹣a),其中a为(1)中计算的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAC和∠DAE都是70°30′的角.

(1)如果∠DAC=27°30′,那么∠BAE等于多少度?(写出过程)

(2)请写出图中相等的角;

(3)若∠DAC变大,则∠BAD如何变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,点EAD边上,点FAD的延长线上,且BE=CF.

(1)求证:四边形EBCF是平行四边形.

(2)若BEC=90°,ABE=30°,AB=,求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.

(1)填空:A点坐标为(),D点坐标为();
(2)若抛物线y= x2+bx+c经过C,D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.
(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣ ,顶点坐标是(﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.

(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?

(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?

查看答案和解析>>

同步练习册答案