精英家教网 > 初中数学 > 题目详情

【题目】已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为

【答案】5
【解析】解:作OF⊥PQ于F,连接OP,
∴PF= PQ=12,
∵CD⊥AB,PQ∥AB,
∴CD⊥PQ,
∴四边形MEOF为矩形,
∵CD=PQ,OF⊥PQ,CD⊥AB,
∴OE=OF,
∴四边形MEOF为正方形,
设半径为x,则OF=OE=18﹣x,
在直角△OPF中,
x2=122+(18﹣x)2
解得x=13,
则MF=OF=OE=5,
∴OM=5
故答案为:5
作OF⊥PQ于F,连接OP,根据已知和图形证明四边形MEOF为正方形,设半径为x,用x表示出OF,在直角△OPF中,根据勾股定理列出方程求出x的值,得到答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC在直角坐标系中,

(1)请写出△ABC各点的坐标

(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出 A′、B′、C′的坐标,并在图中画出平移后图形

(3)求出三角形ABC的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是(

A.当x=2时,y=5

B.矩形MNPQ的面积是20

C.当x=6时,y=10

D.当y=时,x=10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从下列图形中,不是轴对称图形的是(   )

A.平行四边形B.半圆性C.环形D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按图填空,并注明理由.

⑴完成正确的证明:如图,已知AB∥CD,求证:∠BED=∠B+∠D

证明:过E点作EF∥AB(经过直线外一点有且只有一条直线与这条直线平行)

∴∠1= ( )

∵AB∥CD(已知)

∴EF∥CD(如果两条直线与同一直线平行,那么它们也平行)

∴∠2= ( )

又∠BED=∠1+∠2

∴∠BED=∠B+∠D (等量代换).

⑵如图,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.

解:因为EF∥AD(已知)

所以∠2=∠3.( )

又因为∠1=∠2,所以∠1=∠3.(等量代换)

所以AB∥ ( )

所以∠BAC+ =180°( ).

又因为∠BAC=70°,所以∠AGD=110°.

图⑴ 图⑵

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一根绳子长20米,用去15米,用去_______%,还剩_______%.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“一带一路”是对古丝绸之路的传承和提升,让中国和世界的联系更紧密,电气设备是“一带一路”沿线国家受青睐的商品。某企业计划生产甲、乙两种电气设备出口,甲种设备售价50千元/件,乙种设备售价30千元/件,生产这两种设备需要A、B两种原料,生产甲设备需要A种原料4吨/件,B种原料2吨/件,生产乙设备需要A种原料3吨/件,B种原料1吨/件,已知A种原料有120吨,B种原料有50吨.

(1)如何安排生产,才能恰好使A、B两种原料全部用完?此时总产值是多少千元?

(2)若使甲种设备售价上涨10%,而乙种设备售价下降10%,并且要求甲种设备比乙种设备多生产25件,问如何安排甲、乙两种设备的生产,使销售总产值能达到1375千元,此时A、B两种原料还剩下多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE∥BF∠1与∠2互补.

1)试说明:FG∥AB;

2)若∠CFG=60°∠2=150°,则DEAC垂直吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一块直角三角板DEF放置在ABC上,三角板DEF的两条直角边DEDF恰好分别经过点BCABC中,∠A=50°,求∠DBA+DCA的度数.

查看答案和解析>>

同步练习册答案