精英家教网 > 初中数学 > 题目详情
11.(1)$\sqrt{48}-\sqrt{54}÷2+({3-2\sqrt{3}})({2\sqrt{3}+3})$                             
(2)(3$\sqrt{12}$-2$\sqrt{\frac{1}{3}}$+$\sqrt{48}$)÷2$\sqrt{3}$
(3)先化简,再求值:$({\frac{2a}{a-1}+\frac{a}{1-a}})÷a$其中a=$\sqrt{2}$+1.

分析 (1)先化简各二次根式,再根据混合运算的顺序依次计算可得;
(2)先化简括号内的二次根式并合并同类二次根式,再计算除法即可得;
(3)先化简分式,再代入计算可得.

解答 解:(1)原式=4$\sqrt{3}$-$\frac{3\sqrt{6}}{2}$+9-(2$\sqrt{3}$)2
=4$\sqrt{3}$-$\frac{3\sqrt{6}}{2}$+9-12
=4$\sqrt{3}$-$\frac{3\sqrt{6}}{2}$-3;

(2)原式=(6$\sqrt{3}$-$\frac{2\sqrt{3}}{3}$+4$\sqrt{3}$)$÷2\sqrt{3}$
=$\frac{28\sqrt{3}}{3}$÷2$\sqrt{3}$
=$\frac{14}{3}$;

(3)原式=($\frac{2a}{a-1}$-$\frac{a}{a-1}$)÷a
=$\frac{a}{a-1}$×$\frac{1}{a}$
=$\frac{1}{a-1}$,
当a=$\sqrt{2}$+1时,
原式=$\frac{1}{\sqrt{2}+1-1}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.

点评 本题主要考查二次根式的化简求值和分式的化简求值,熟练掌握二次根式的性质和混合运算的顺序是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.分解因式:(a2+2a)2-7(a2+2a)-8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列方程中是一元一次方程的是(  )
A.x2+5=9B.x+5=x+9C.x+9=2x-10D.$\frac{1}{x}$+5=9

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726000000元,用科学记数法表示为7.26×108

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.某果园第1年水果产量为100吨,第3年水果产量为169吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为(  )
A.169(1-x)2=100B.100(1-x)2=169C.169(1+x)2=100D.100(1+x)2=169

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知关于x的一元二次方程2x2-x+m2-9=0有一个根是0,则m的值为(  )
A.3B.3或-3
C.-3D.不等于3的任意实数

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.在平面直角坐标系中,点A(3,4)关于原点的对称点的坐标为(  )
A.(3,4)B.(-3,-4)C.(3,-4)D.(-3,4)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 71mm2,这个数用科学记数法表示为7.1×10-7 mm2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,与∠2互为同旁内角的是∠1,∠3;与∠3互为同位角的是∠4,∠5;∠6与∠9是内错角,它们是直线AC与DE被直线BE所截得的;∠3与∠5是直线AC与直线BC被直线BE所截得的;与∠1是同位角的有∠7,∠8,在标有数字的九个角中,大小一定相等的角有∠2=∠6,∠5=∠7.

查看答案和解析>>

同步练习册答案