【题目】如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在BC和CD上,下列结论:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正确的序号是______.
【答案】①②④
【解析】
根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断④的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC⊥EF,然后分别求得AG与CG的长,继而求得答案.
解:∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,,
∴Rt△ABERt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC-BE=CD-DF,
∴CE=CF,故①正确;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,故④正确;
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF,
∵∠CAF≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,故③错误;
∵△AEF是边长为2的等边三角形,∠ACB=∠ACD,
∴AC⊥EF,EG=FG,
∴AG=AEsin60°=2×=,CG=EF=1,
∴AC=AG+CG=+1;故②正确.
故答案为:①②④.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( )
A.32°B.64°C.77°D.87°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在中,,于,的平分线交于,交于,的角平分线交于,交于.
(1)求证:;
(2)判断与的位置关系,并说明理由.
(3)再找出二组相等的线段:①________;②___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ的4条边的小方格顶点上.
(1)设正方形MNPQ网格内的每个小方格的边长为1,求:正方形ABCD的面积;
(2)①在图2中画出以AB为一条直角边的等腰直角△ABC,且点C在小正方形的顶点上;
②在图2中画出以AB为一边的菱形ABDE,且点D和点E均在小正方形的顶点上,菱形ABDE的面积为15,连接CE,请直接写出线段CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF
(1)求证:四边形AEDF为菱形;
(2)试探究:当AB:BC= ,菱形AEDF为正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:正方形OABC置于坐标系中,B的坐标是(-4,4),点D是边OA上一动点,以OD为边在第一象限内作正方形ODEF.
(1)CD与AF有怎样的位置关系,猜想并证明;
(2)当OD=______时,直线CD平分线段AF;
(3)在OD=2时,将正方形ODEF绕点O逆时针旋转α°(0°<α°<180°),求当C、D、E共线时D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.
(1)求证:直线BF是⊙O的切线.
(2)若CD=2,OP=1,求线段BF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com