证明:(1)

∵AE平分∠DAC,EF⊥AC,EG⊥AD,
∴∠EFC=∠EGB=90°,EF=EG,
∵在Rt△EGB和Rt△EFC中

,
∴Rt△EGB≌Rt△EFC(HL);
(2)解:∵△EGB≌△EFC,
∴GB=FC,EG=EF,
在Rt△EGA和Rt△EFA中

,
∴Rt△EGA≌Rt△EFA
∴AF=AG,
∵AG+AB=AC-AF,
∴AF+AB=AC-AF,
∴2AF=AC-AB=5-3=2,
∴AF=1.
分析:(1)求出∠EFC=∠EGB=90°,EF=EG,根据HL推出两三角形全等即可;
(2)根据全等三角形的性质得出GB=FC,根据勾股定理求出AF=AG,求出AG,即可得出答案.
点评:本题考查了角平分线性质,全等三角形的性质和判定,勾股定理等知识点的应用,关键是推出△EGB≌△EFC和Rt△EGA≌Rt△EFA是解题关键.