【题目】关于的一元二次方程有两个不相等的实数根、.
(1)求的取值范围;
(2)求证:<0,<0;
(3)若,求的值.
【答案】(1)k<;(2)证明见解析;(3)k的值为﹣4.
【解析】
(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;
(2)由k的取值范围结合根与系数的关系,即可证出x1<0,x2<0;
(3)由(2)的结论结合根与系数的关系,即可得出关于k的一元二次方程,利用因式分解法解该方程即可求出k值.
(1)解:∵关于x的一元二次方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根,
∴△=[﹣(2k﹣3)]2﹣4(k2+1)>0,
解得:k<.
(2)证明:∵k<,
∴x1+x2=2k﹣3<﹣,x1x2=k2+1>,
∴x1<0,x2<0;
(3)解:∵x1x2﹣|x1|﹣|x2|=6,
∴x1x2+(x1+x2)=6,即k2+1+2k﹣3=6,
∴(k+4)(k﹣2)=0,
解得:k1=﹣4,k2=2(不合题意,舍去),
∴k的值为﹣4.
科目:初中数学 来源: 题型:
【题目】已知一元二次方程x2﹣4x+k=0有两个不相等的实数根
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直角△ABC中,∠ACB=90°,AC=3cm,BC=4cm,AB=5cm,如果AD平分∠BAC,且ADCD,那么点D到AB的距离为 ______cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,点是直线上一点(不与、重合),以为一边在的右侧作,使,,连接.
(1)如图1,当点在线段上时,如果,则______度;
(2)设,.
①如图2,当点在线段上移动,则,之间有怎样的数量关系?请说明理由;
②当点在直线上时,则,之间有怎样的数量关系?
写出所有可能的结论并说明条件.
答:(2)①数量关系____________.
理由:
②数量关系____________.
备用图:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com