精英家教网 > 初中数学 > 题目详情
3.如图,在平行四边形ABCD中,AE⊥BC,AF⊥CD,点E,F为垂足,∠EAF=30°,AE=3cm,AF=2cm,求平行四边形ABCD的周长.

分析 求出∠B=∠D=30°,在直角△ABE中利用三角函数求得AB的长,在直角△ADF中求得AD,则平行四边形的周长即可求得.

解答 解:如图所示:
∵在直角△AFG中,∠AGF=90°-∠EAF=90°-30°=60°,
∴∠CGE=∠AGF=60°,
∴在直角△CGE中,∠GCE=90°-∠CGE=90°-60°=30°,
又∵平行四边形ABCD中,AB∥CD,
∴∠D=∠B=∠GCE=30°,
∴AB=2AE=6cm.AD=2AF=4cm,
∴?ABCD的周长是:2(6+4)=20(cm).

点评 本题考查了平行四边形的性质以及三角函数的应用,正确求得∠B的度数是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.若α、β是方程x2+2x-2017=0的两个实数根,则α2+3α+β的值为2015.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在正方形ABCD中,点P是BC边上一点(不与B、C重合),连接PA,将线段PA绕点P顺时针旋转90°得到线段PE,交边DC于F,连接AE,CE.
(1)求证:△ABP∽△PCF;
(2)求∠ECF的度数;
(3)若∠APB=75°,PC=2,求S△APE

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在扇形ACB中,∠ACB=90°,BC为直径作半圆,圆心为O.过点O作AC的平行线交两弧于点D、E,若BC=2,则阴影部分的面积是$\frac{5}{12}$π-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,D是△ABC内一点,AD=7,BC=5,若E、F、C、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是12.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列计算结果为正数的是(  )
A.(-$\frac{1}{2}$)-2B.-(-$\frac{1}{2}$)0C.(-$\frac{1}{2}$)3D.-|$\frac{1}{2}$|

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)(t为常数)称为这两个函数的“再生二次函数”.其中t是不为零的实数,其图象记作抛物线F,现有点A(2,0)和抛物线F上的点B(-1,n),下列结论正确的有①②③.
①n的值为6;
②点A在抛物线F上;
③当t=2时,“再生二次函数”y在x>2时,y随x的增大而增大
④当t=2时,抛物线F的顶点坐标是(1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.若多项式x2+ax+b因式分解的结果为a(x-2)(x+3),求a、b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.在直角坐标系中,如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为?(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案