精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,0是坐标原点,A(3,0)B(2,2),以O,A,C为顶点的三角形与△OAB全等(C,B不重合),则满足条件的C的坐标不可以是


  1. A.
    (2,-2)
  2. B.
    (-2,2)
  3. C.
    (1,2)
  4. D.
    (1,-2)
B
分析:根据勾股定理求出OB、AB的长度,然后根据各选项中的△OAC的特征,根据“SSS”定理进行判定三角形全等即可.
解答:解:根据勾股定理得,OB==2
AB==
A、点C的坐标是(2,-2)时,点C与点B关于x轴对称,
∴△OAB≌△OAC,故本选项正确;
B、点C的坐标是(-2,2)时,△OAC是钝角三角形,而△OAB是锐角三角形,
两三角形不可能全等,故本选项错误;
C、点C坐标是(1,2)时,OC==,AC==2
此时
∴△OAC≌△OAB(SSS),
故本选项正确;
D、点C坐标是(1,-2)时,OC==,AC==2
此时
∴△OAC≌△OAB(SSS),
故本选项正确.
故选B.
点评:本题考查了全等三角形的性质,点的坐标的特征,结合各选项分析△OAC的形状与各边的长是解题的关键,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案