精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:PC是⊙O的切线;
(2)若∠PAC=60°,直径AC=4数学公式,求图中阴影部分的面积.

(1)证明:连接AN,
∵AC为⊙O的直径,
∴∠ANC=90°,
∴∠NAC+∠NCA=90°,
∵AB=AC,AN⊥BC,
∴∠BAN=∠CAN,
∵∠CAB=2∠BCP,
∴2∠CAN=2∠BCP,
∴∠CAN=∠BCP,
∴∠BCP+∠ACB=90°,
即∠ACP=90°,
∴AC⊥PC,
∴PC是⊙O的切线;

(2)连接ON,
∵AB=AC,∠BAC=60°,
∴△ABC是等边三角形,
∴∠ACB=60°,
∵ON=OC,
∴△ONC是等边三角形,
∴∠NOC=60°,
∴OC=NC=AC=×4=2
过点O作OE⊥NC于E,
∵sin∠ACB=
∴sin60°=
∴OE=2×=3,
∵S△ONC=NC•OE=×2×3=3,S扇形==2π,
∴S阴影=S扇形-S△ONC=2π-3
分析:(1)首先连接AN,由以AC为直径的⊙O,可得∠ANC=90°,又由AB=AC,AN⊥BC,可求得∠CAN=∠BCP,继而证得∠ACP=90°,即可判定PC是⊙O的切线;
(2)连接ON,由AB=AC,∠BAC=60°,可得△ABC是等边三角形,然后分别求得△OCN与扇形CON的面积,即可求得答案.
点评:此题考查了切线的判定、扇形的面积以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案