【题目】在△ABC中,角A,B,C的对边分别为,且满足 .
(1)求角A的大小;
(2)若D为BC上一点,且 ,求a.
【答案】
(1)解:由 ,则(2c﹣b)cosA=acosB,
由正弦定理可知: = = =2R,则a=2RsinA,b=2RsinB,c=2RsinC,
∴(2sinC﹣sinB)cosA=sinAcosB,
整理得:2sinCcosA﹣sinBcosA=sinAcosB,
由A=π﹣(B+C),则sinA=sin[π﹣(B+C)]=sin(B+C),
即2sinCcosA=sin(A+B)=sinC,
由sinC≠0,则cosC= ,即A= ,
∴角A的大小
(2)解:过D作DE∥AB于E,则△ADE中,ED= AC=1,∠DEA= ,
由余弦定理可知AD2=AE2+ED2﹣2AEEDcos ,
又AC=3,A= ,则△ABC为直角三角形,
∴a=BC=3 ,
∴a的值为3 .
【解析】(1)由题意根据正弦定理求得∴(2sinC﹣sinB)cosA=sinAcosB,由A=π﹣(B+C),根据诱导公式及两角和正弦公式,即可求得A的值;(2)过D作DE∥AB于E,则△ADE中,ED= AC=1,∠DEA= ,由余弦定理可知△ABC为直角三角形,a=BC=3 .
科目:初中数学 来源: 题型:
【题目】今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.
(1)试问去年每吨大蒜的平均价格是多少元?
(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:
网购达人 | 非网购达人 | 合计 | |
男性 | 30 | ||
女性 | 12 | 30 | |
合计 | 60 |
若网购金额超过2千元的顾客称为“网购达人”,网购金额不超过2千元的顾客称为“非网购达人”.
(Ⅰ)若抽取的“网购达人”中女性占12人,请根据条件完成上面的2×2列联表,并判断是否有99%的把握认为“网购达人”与性别有关?
(Ⅱ)该营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定12人,若需从这12人中随机选取3人进行问卷调查.设ξ为选取的3人中“网购达人”的人数,求ξ的分布列和数学期望.
(参考公式: ,其中n=a+b+c+d)
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知椭圆C: 的焦距为2,点Q( ,0)在直线l:x=3上.
(1)求椭圆C的标准方程;
(2)若O为坐标原点,P为直线l上一动点,过点P作直线与椭圆相切点于点A,求△POA面积S的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知椭圆 内有一点M(2,1),过M的两条直线l1 , l2分别与椭圆E交于A,C和B,D两点,且满足 (其中λ>0,且λ≠1),若λ变化时,AB的斜率总为 ,则椭圆E的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知曲线C1的参数方程为 (t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 . (I)求曲线C2的直角坐标系方程;
(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知f(x)=x2(1nx﹣a)+a,则下列结论中错误的是( )
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数f(x)=xlnx﹣ x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求实数a的取值范围;
(2)若函数g(x)=f(x)﹣x有两个相异极值点x1、x2 , 求证: + >2ae.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD在坐标系中如图所示放置.已知点B、C在x轴上,点A在第二象限,D(2,4),BC=6,反比例函数y= (x<0)的图象经过点A.
(1)求k值;
(2)把矩形ABCD向左平移,使点C刚好与原点重合,此时线段AB与反比例函数y= 的交点坐标是什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com