精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.
(1)求抛物线的函数表达式;
(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;
(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.
分析:(1)把A、B、O的坐标代入得到方程组,求出方程组的解即可;
(2)根据对称轴求出O、B关于对称轴对称,根据勾股定理求出AB即可;
(3)①若OB∥AP,根据点A与点P关于直线x=1对称,由A(-2,-4),得出P的坐标;②若OA∥BP,设直线OA的表达式为y=kx,设直线BP的表达式为y=2x+m,由B(2,0)求出直线BP的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB∥OP,设直线AB的表达式为y=kx+m,求出直线AB,得到方程组求出方程组的解即可;
解答:解:(1)由OB=2,可知B(2,0),
将A(-2,-4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,
-4=4a-2b+c
0=4a+2b+c
0=c

解得:a=-
1
2
,b=1,c=0

∴抛物线的函数表达式为y=-
1
2
x2+x

答:抛物线的函数表达式为y=-
1
2
x2+x


(2)由y=-
1
2
x2+x=-
1
2
(x-1)2+
1
2

可得,抛物线的对称轴为直线x=1,精英家教网
且对称轴x=1是线段OB的垂直平分线,
连接AB交直线x=1于点M,M点即为所求.
∴MO=MB,则MO+MA=MA+MB=AB
作AC⊥x轴,垂足为C,则AC=4,BC=4,∴AB=4
2

∴MO+MA的最小值为4
2

答:MO+MA的最小值为4
2


(3)①若OB∥AP,此时点A与点P关于直线x=1对称,精英家教网
由A(-2,-4),得P(4,-4),则得梯形OAPB.
②若OA∥BP,精英家教网
设直线OA的表达式为y=kx,由A(-2,-4)得,y=2x.
设直线BP的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=-4,
∴直线BP的表达式为y=2x-4
y=2x-4
y=-
1
2
x2+x
,解得x1=-4,x2=2(不合题意,舍去)
当x=-4时,y=-12,∴点P(-4,-12),则得梯形OAPB.
③若AB∥OP,精英家教网
设直线AB的表达式为y=kx+m,则
-4=-2k+m
0=2k+m

解得
k=1
m=-2
,∴AB的表达式为y=x-2.
∵AB∥OP,
∴直线OP的表达式为y=x.
y=x
y=-
1
2
x2+x
,得 x2=0,解得x=0,
(不合题意,舍去),此时点P不存在.
综上所述,存在两点P(4,-4)或P(-4,-12)
使得以点P与点O、A、B为顶点的四边形是梯形.
答:在此抛物线上,存在点P,使得以点P与点O、A、B为顶点的四边形是梯形,点P的坐标是(4,-4)或(-4,-12).
点评:本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案