分析 (1)①由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;
②由①得到AD=CE,CD=BE,即可求出答案;
(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案
(3)根据例题中的线段的位置即可直接求得AD、DE、BE的关系,证明△ACD≌△CBE即可证得结论.
解答 解:
(1)①证明:∵AD⊥DE,BE⊥DE,
∴∠ADC=∠BEC=90°,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,①
∴∠DAC=∠BCE,
在△ADC和△CEB中,
$\left\{\begin{array}{l}{∠CDA=∠BEC}\\{∠DAC=∠ECB}\\{AC=BC}\end{array}\right.$,
∴△ADC≌△CEB(AAS).
②证明:由(1)知:△ADC≌△CEB,
∴AD=CE,CD=BE,
∵DC+CE=DE,
∴AD+BE=DE.
(2)证明:∵BE⊥EC,AD⊥CE,
∴∠ADC=∠BEC=90°,
∴∠EBC+∠ECB=90°,
∵∠ACB=90°,
∴∠ECB+∠ACE=90°,
∴∠ACD=∠EBC,
在△ADC和△CEB中,
$\left\{\begin{array}{l}{∠ACD=∠CBE}\\{∠ADC=∠BEC}\\{AC=BC}\end{array}\right.$,
∴△ADC≌△CEB(AAS),
∴AD=CE,CD=BE,
∴DE=EC-CD=AD-BE.
(3)关系为:AD=DE+BE.
理由是:∵∠ACB=90°
∴∠ACD+∠ECB=90°
∵AD⊥MN,BE⊥MN,
∴∠CAD+∠ACD=90°,
∴∠CAD=∠ECB.
∠CDA=∠CEB=90°
在△ACD和△CBE中,
$\left\{\begin{array}{l}{∠CDA=∠CEB}\\{∠CAD=∠ECB}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△CBE.
∴CD=BE,AD=EC.
又∵EC=DE+CD,
∴AD=DE+BE.
点评 此题主要考查了邻补角的意义,全等三角形的性质和判定等知识点,能根据已知证出符合全等的条件是解此题的关键,题型较好,综合性比较强.
科目:初中数学 来源: 题型:选择题
| A. | 2x2-3x-1 | B. | -$\frac{7}{3}$x2y3 | C. | $\frac{2xy}{m}$ | D. | $\frac{1}{2}$(x2-y) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com