【题目】已知在菱形ABCD中,∠ABC=60°,对角线AC、BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作菱形AEFG,且∠AEF=60°.![]()
(1)如图1,若点F落在线段BD上,请判断:线段EF与线段DF的数量关系是.
(2)如图2,![]()
若点F不在线段BD上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;
(3)若点C,E,G三点在同一直线上,其它条件不变,请直接写出线段BE与线段BD的数系.
【答案】
(1)
解:如图1,连接AF,
![]()
∵四边形ABCD是菱形,
∴AC⊥BD,∠ABO=
∠ABC=30°,
∴∠OAE=∠OAF=30°,
∴∠DAF=30°=∠ADO,
∴AF=FD,
∵AF=EF,
∴EF=FD;
∵∠AEF=60°,
∴∠BAE=30°=∠ABO,
∴AE=BE
(2)
解:成立,如图3,
连接CE,AF,
![]()
∵四边形ABCD是菱形,四边形AEFG是菱形,
∴AD=CD,AE=EF,BD垂直平分AC,∠ABC=∠ADC=60°,
∴∠ADC=∠AEF=60°,
∴△ACD和△AEF是等边三角形,
∴AC=AD,AE=AF=EF,∠CAD=∠EAF=60°,
∴∠CAE=∠DAF,
在△ACE和△ADF中,
,
△ACE≌△ADF,
∴EC=DF,
∵BD垂直平分AC,
∴EC=AE,
∴DF=AE=EF
(3)
解:∵AE=CE,
∴∠ACE=∠CAE,
∵点C,E,G在同一条直线上,
∴∠AEG=2∠CAE=30°,
∴∠CAE=15°,
∵∠BAO=60°°,
∴∠BAE=75°,
∵∠ABO=
∠ABC=30°,
∴∠AEB=75°=∠BAE,
∴BE=AB,
在Rt△AOB中,∠ABO=30°,
∴cos∠ABO=
=
,
∴OB=
AB=
BE,
∴BD=2OB=
BE
【解析】(1)先利用菱形的性质得出∠ABO=∠ADO=30°,AC⊥BD,即可求出∠FAD=30°即可得出结论;(2)先判断出△ACD和△AEF是等边三角形,进而得出∠CAE=∠DAF,即可判断出△ACE≌△ADF,即可得出结论;(3)先求出∠CAE=15°,进而判断出BE=AB,再找出OB与AB的关键,代换即可得出结论.
科目:初中数学 来源: 题型:
【题目】如图,△ABC经过一次平移到△DFE的位置,请回答下列问题:
![]()
(1)点C的对应点是点__________,∠D=__________,BC=__________;
(2)连接CE,那么平移的方向就是__________的方向,平移的距离就是线段__________的长度;
(3)连接AD,BF,BE,与线段CE相等的线段有__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,茬四边形ABCD中,AD∥BC,E是BC的中点,AC平分∠BCD,且AC⊥AB,接DE,交AC于F. ![]()
(1)求证:AD=CE;
(2)若∠B=60°,试确定四边形ABED是什么特殊四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
① 求证:△ABE≌△CBD;
② 若∠CAE=30°,求∠BDC的度数.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a>b,请用“>”或“<”填空:
(1)a-1________b-1;(2)
a________
b;(3)a+c________b+c;(4)-3a________-3b;(5)-
a-c________-
b-c.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知线段AB=12cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.
(1)若点C恰好是AB的中点,则DE=_______cm;
(2)若AC=4cm,求DE的长;
(3)试说明无论AC取何值(不超过12cm),DE的长不变;
(4)如图②,已知∠AOB=120°,过角的内部任一点C画射线OC.若OD,OE分别平分∠AOC和∠BOC.试说明∠DOE的度数与射线OC的位置无关.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小华通过学习函数发现:若二次函数y=ax2+bx+c(a≠0)的图象经过点(x1 , y1),(x2 , y2)(x1<x2),若y1y2<0,则方程ax2+bx+c=0(a≠0)的一个根x0的取值范围是x1<x0<x2 , 请你类比此方法,推断方程x3+x﹣1=0的实数根x0所在范围为( )
A.﹣
<x0<0
B.0<x0< ![]()
C.
<x0<1
D.1<x0< ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com