精英家教网 > 初中数学 > 题目详情
如图,△ABC为等边三角形,边长为4,F为BC边上一个动点(不与B,C重合),DF⊥AB,EF⊥AC,垂足分别为D和E.
(1)求证:△BDF∽△CEF;
(2)设BF=m,四边形ADEF面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值.
考点:相似三角形的判定与性质,二次函数的最值,等边三角形的性质
专题:
分析:(1)只需找到两组对应角相等即可.
(2)四边形ADFE面积S可以看成△ADF与△AEF的面积之和,借助三角函数用m表示出AD、DF、AE、EF的长,进而可以用含m的代数式表示S,然后通过配方,转化为二次函数的最值问题,就可以解决问题.
解答:(1)求证:∵DF⊥AB,EF⊥AC,
∴∠BDF=∠CEF=90°.
∵△ABC为等边三角形,
∴∠B=∠C=60°.
∵∠BDF=∠CEF,∠B=∠C,
∴△BDF∽△CEF.
(2)解:∵∠BDF=90°,∠B=60°,
∴sin60°=
DF
BF
=
3
2
,cos60°=
BD
BF
=
1
2

∵BF=m,
∴DF=
3
2
m,BD=
1
2
m.
∵AB=4,
∴AD=4-
1
2
m.
∴S△ADF=
1
2
AD•DF
=
1
2
×(4-
1
2
m)×
3
2
m
=-
3
8
m2+
3
m.
同理:S△AEF=AE•EF=-
3
8
m2+2
3
.  
∴S=S△ADF+S△AEF
=-
3
4
m2+
3
m+2
3

=-
3
4
(m2-4m-8)
=-
3
4
(m-2)2+3
3
                      
∴当m=2时,S取最大值,最大值为3
3
点评:本题考查了相似三角形的判定、二次函数的最值、三角函数、解直角三角形、等边三角形的性质等知识,综合性强,灵活掌握并运用基础知识解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 0025米,把0.000 0025用科学记数法表示为(  )
A、2.5×106
B、0.25×10-5
C、25×10-7
D、2.5×10-6

查看答案和解析>>

科目:初中数学 来源: 题型:

小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,试确定线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:

(1)取特殊情况,探索讨论:当点E为AB的中点时,如图(2),确定线段AE与DB的大小关系,请你直接写出结论:AE
 
DB(填“>”,“<”或“=”).
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE
 
DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出图形,并直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

若双曲线y=
k
x
与直线y=2x+1的一个交点的横坐标为-1,则k的值为(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,边长为
5
的正方形ABCD的顶点A,D分别在x轴、y轴的正半轴上,点A的坐标(1,0).
(1)写出点B的坐标(
 
 
);点C的坐标(
 
 
);
(2)若抛物线y=-
5
6
x2+bx+2恰好经过B,C,D三点.
①求b的值;
②根据函数的图象,求出当y>0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

某住宅小区的物业管理部门为解决部门为解决住户停车困难问题,将一条道路开辟为停车场,停车位置如图所示,已知矩形ABCD是供一辆机动车停放的车位,其中AB=5.4m,BC=2.2m,∠DCF=40°.请计算停车位所占道路的宽度EF.(结果精确到0.1m)参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.
A、8.6B、5.2
C、4.8D、5.6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,AC与BD相交于点O,AE=EF=FD,BE交AC于G,则GE:BE=(  )
A、1:2B、2:3
C、1:4D、2:5

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在等腰梯形ABCD中,AB∥CD,点M是AB的中点.求证:△ADM≌△BCM.
(2)如图,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,
(1)若以点B为平面直角坐标系为原点,以BC所在的直线为x轴建立平面直角坐标系,则点C的坐标为
 
,点A的坐标为
 

(2)将△ABC绕点B顺时针旋转90°到△A′B′C′的位置,在图中画出旋转后得到的△A′B′C′;
(3)在(2)中求线段AB扫过的图形面积是多少平方单位(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,请通过列表或画树状图求2次摸出的球都是白球的概率;
(2)搅匀后从中任意一次摸出2个球,则摸出的2个球都是白球的概率为
 

(3)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为
 

查看答案和解析>>

同步练习册答案