精英家教网 > 初中数学 > 题目详情
4.如图,是被称为“东方魔板”的七巧板,小明随意的向正方形内扎飞镖(线段的粗细忽略不计),则扎飞镖一次恰扎中阴影区域的概率为$\frac{3}{16}$.

分析 根据一般说的七巧板,两个大三角形分别占大正方形的$\frac{1}{4}$,一个中三角形占正方形的$\frac{1}{8}$,一个正方形占正方形的$\frac{1}{8}$,一个平行四边形都是占正方形的$\frac{1}{8}$,两个小三角形分别占正方形的$\frac{1}{16}$,根据几何概率的定义求概率,即可解答.

解答 解:设正方形的面积为S,
∵一个正方形占正方形的$\frac{1}{8}$,小三角形占正方形的$\frac{1}{16}$,
∴阴影部分的面积为:($\frac{1}{8}+\frac{1}{16}$)S=$\frac{3}{16}$S,
∴则扎飞镖一次恰扎中阴影区域的概率为$\frac{3}{16}$S÷S=$\frac{3}{16}$.
故答案为:$\frac{3}{16}$.

点评 本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.如图图形中,阴影部分面积相等的是(  )
A.甲乙B.甲丙C.乙丙D.丙丁

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列说法:
①-ax2-4a=-a(x+2)(x-2);
②函数y=$\frac{1}{\sqrt{x-3}}$自变量取值范围是x≥3;
③$\frac{1}{1-\sqrt{2}}$=-1+$\sqrt{2}$;
④不等式组$\left\{\begin{array}{l}{2x+3>1}\\{5-x>2}\end{array}\right.$的整数解为x=0,1,2;
⑤两组数据1、2、3、4、5与6、7、8、9、10的波动程度相同;
⑥双曲线y=$\frac{1}{x}$与抛物线y=x2-1只有一个交点.
其中正确的是(  )
A.①②③B.③④⑤C.④⑤D.④⑤⑥

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在△ABC中,AD⊥BC于点D,AD=CD=2,过点C作CE⊥AB,交AD于点F,若BD=DF=2$\sqrt{2}$-2,CF=2BE,则AC的长为$2\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+b经过点A(-4,0)、B(0,2)两点,点C、D在直线AB上,C的纵坐标为3,点D在第三象限,且△OBC与△OAD的面积相等,则点D的坐标为(-6,-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.
(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;
(2)如图②③,点D在线段BC(或CB)的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,由B到A的方向是(  )
A.南偏东30°B.东偏南60°C.西偏北30°D.北偏西60°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=15,则线段MN的长为(  )
A.14B.15C.16D.17

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列说法正确的是(  )
A.0•a不是单项式B.-$\frac{xyz}{3}$的系数是-$\frac{1}{3}$
C.-$\frac{abc}{4}$的系数是-4D.x3y的系数是0

查看答案和解析>>

同步练习册答案