分析 (1)由等边三角形的性质得出∠BAC=∠DAE,容易得出结论;
(2)由△ABC和△ADE是等边三角形可以得出AB=BC=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠ABD=120°,再证明△ABD≌△ACE,得出∠ABD=∠ACE=120°,即可得出结论.
解答 解:(1)∠BAD=∠CAE;理由:
∵△ABC和△ADE是等边三角形,
∴∠BAC=∠DAE=60°,
∴∠BAD=∠CAE;
(2)∠DCE=60°,不发生变化;理由如下:
∵△ABC是等边三角形,△ADE是等边三角形,
∴∠DAE=∠BAC=∠ABC=∠ACB=60°,AB=AC,AD=AE.
∴∠ABD=120°,∠BAC-∠BAE=∠DAE-∠BAE
∴∠DAB=∠CAE.
在△ABD和△ACE中,
$\left\{\begin{array}{l}{AB=AE}&{\;}\\{∠DAB=∠CAE}&{\;}\\{AB=AC}&{\;}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴∠ACE=∠ABD=120°.
∴∠DCE=∠ACE-∠ACB=120°-60°=60°.
点评 本题考查了全等三角形的判定与性质以及等边三角形的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{5}-\sqrt{3}=\sqrt{2}$ | B. | $\sqrt{6}÷2=\sqrt{3}$ | C. | $\sqrt{2}$•$\sqrt{3}=\sqrt{6}$ | D. | $\sqrt{8}=4\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com