【题目】如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C(0,﹣3).
(1)求此二次函数的解析式.
(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由.
(3)若点M在x轴上,点P在抛物线上,是否存在以A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请直接写出所有满足要求的点P的坐标;若不存在,请说明理由.
【答案】(1)抛物线的解析式为y=x2﹣2x﹣3.
(2)四边形EFCD是正方形;
(3)当P点坐标为(1+,2)或(1﹣,2)或(0,﹣2)时,存在以A,E,M,P为顶点且以AE为一边的平行四边形.
【解析】
试题分析:(1)利用待定系数法即可解决问题.
(2)结论四边形EFCD是正方形.如图1中,连接CE与DF交于点K.求出E、F、D、C四点坐标,只要证明DF⊥CE,DF=CE,KC=KE,KF=KD即可证明.
(3)如图2中,存在以A,E,M,P为顶点且以AE为一边的平行四边形.根据点P的纵坐标为2或﹣2,即可解决问题.
试题解析:(1)把A(﹣1,0),B(3,0),C(0,﹣3)代入y=ax2+bx+c得,
解得,∴抛物线的解析式为y=x2﹣2x﹣3.
(2)结论四边形EFCD是正方形.
理由:如图1中,连接CE与DF交于点K.
∵y=(x﹣1)2﹣4,∴顶点D(1,4),∵C、E关于对称轴对称,C(0,﹣3),
∴E(2,﹣3),∵A(﹣1,0),设直线AE的解析式为y=kx+b,
∴,解得,
∴直线AE的解析式为y=﹣x﹣1.
∴F(1,﹣2),
∴CK=EK=1,FK=DK=1,
∴四边形EFCD是平行四边形,
又∵CE⊥DF,CE=DF,
∴四边形EFCD是正方形.
(3)如图2中,存在以A,E,M,P为顶点且以AE为一边的平行四边形.
由题意点P的纵坐标为2或﹣2,
当y=2时,x2﹣2x﹣3=2,解得x=1±,
可得P1(1+,2),P2(1-,2),
当y=﹣2时,x=0,可得P3(0,﹣2),
综上所述当P点坐标为(1+ ,2)或(1﹣,2)或(0,﹣2)时,存在以A,E,M,P为顶点且以AE为一边的平行四边形.
科目:初中数学 来源: 题型:
【题目】现有一张宽为12cm的练习纸,相邻两条格线间的距离均为0.6cm.调皮的小段在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=37°.
(1)求矩形图案的面积;
(2)若小段在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=(2﹣m)x+2的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小华在“科技创新大赛”中制作了一个创意台灯作品,现忽略支管的粗细,得到它的侧面简化结构图如图所示.已知台灯底部支架CD平行于水平面,FE⊥OE,GF⊥EF,台灯上部可绕点O旋转,OE=20cm,EF=20cm.
(1)如图1,若将台灯上部绕点O逆时针转动,当点G落在直线CD上时,测量得∠EOG=65°,求FG的长度(结果精确到0.1cm);
(2)将台灯由图1位置旋转到图2的位置,若此时F,O两点所在的直线恰好与CD垂直,求点F在旋转过程中所形成的弧的长度.(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,≈1.73,可使用科学计算器)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC的顶点A的坐标为(2,0),∠COA=60°,将菱形OABC绕坐标原点O逆时针旋转120°得到菱形ODEF,则线段OB= ;图中阴影部分的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com