精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤线段MN的最小值为
其中正确的结论有( )

A.2个
B.3个
C.4个
D.5个

【答案】D
【解析】解:如图,

∵动点F,E的速度相同,

∴DF=CE,

又∵CD=BC,

∴CF=BE,

在△ABE和△BCF中,

∴△ABE≌△BCF(SAS),故①正确;

∴∠BAE=∠CBF,AE=BF,故②正确;

∵∠BAE+∠BEA=90°,

∴∠CBF+∠BEA=90°,

∴∠APB=90°,故③正确;

在△BPE和△BCF中,

∵∠BPE=∠BCF,∠PBE=∠CBF,

∴△BPE∽△BCF,

=

∴CFBE=PEBF,

∵CF=BE,

∴CF2=PEBF,故④正确;

∵点P在运动中保持∠APB=90°,

∴点P的路径是一段以AB为直径的弧,

设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,

在Rt△BCG中,CG= = =

∵PG= AB=

∴CP=CG﹣PG= =

即线段CP的最小值为 ,故⑤正确;

综上可知正确的有5个,

故选D.

【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明骑自行车上学,某天他从家出发骑行了一段路程,想起要买一本书,于是折回到他刚经过的某书店,买到书后继续去学校.以下是他在本次上学离家的距离与所用的时间的关系示意图,根据图中提供的信息解答下列问题:

(1)小明家与学校的距离是_____米.

(2)小明在书店停留了多少分钟?

(3)AB两题中任选一题作答:

A.小明骑行过程中哪个时间段的速度最快,最快的速度是多少?

B.小明在这次上学过程中的平均速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径, ,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;
(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;
(3)在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD, DE,直接写出△BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组对函数y=x+ 的图象和性质进行了探究,探究过程如下,请补充完整.

x

﹣3

﹣2

﹣1

1

2

3

y

m

﹣2

2


(1)自变量x的取值范围是 , m=
(2)根据(1)中表内的数据,在如图所示的平面直角坐标系中描点,画出函数图象的一部分,请你画出该函数图象的另一部分.
(3)请你根据函数图象,写出两条该函数的性质;
(4)进一步探究该函数的图象发现: ①方程x+ =3有个实数根;
②若关于x的方程x+ =t有2个实数根,则t的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了三线八角为了便于记忆,同学们可仿照图用双手表示三线八角两大拇指代表被截直线,食指代表截线下列三幅图依次表示  

A. 同位角、同旁内角、内错角B. 同位角、内错角、同旁内角

C. 同位角、对顶角、同旁内角D. 同位角、内错角、对顶角

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E、点F分别是等边△ABC的边ABAC上的点,且BE=AFCEBF 相交于点P,则∠BPC的大小为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校七年级三班有50名学生,现对学生最喜欢的球类运动进行了调查,根据调查的结果制作了扇形统计图,如图所示.根据扇形统计图中提供的信息,给出以下结论:

①最喜欢足球的人数最多,达到了15人;

②最喜欢羽毛球的人数最少,只有5人;

③最喜欢排球的人数比最喜欢乒乓球的人数少3人;

④最喜欢乒乓球的人数比最喜欢篮球的人数多6人。

其中正确的结论有

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k0)的图象经过点(1,0)和(0,2).

(1)当﹣2x3时,求y的取值范围;

(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.

查看答案和解析>>

同步练习册答案