精英家教网 > 初中数学 > 题目详情
3.如图,已知a∥b,∠1=55°,∠2=90°,则∠3的度数为(  )
A.35°B.55°C.125°D.145°

分析 根据平行线的性质,得出∠1=∠ACB=55°,根据∠3是△ABC的 外角,即可得出∠3=∠ABC+∠ACB=90°+55°=145°.

解答 解:∵a∥b,
∴∠1=∠ACB=55°,
∵∠2=90°,
∴∠AB=90°,
∵∠3是△ABC的 外角,
∴∠3=∠ABC+∠ACB=90°+55°=145°,
故选:D.

点评 本题主要考查了平行线的性质,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.先化简,再求值:
(1)$\frac{{a}^{2}-8a+16}{{a}^{2}-16}$,其中a=5;       
(2)$\frac{{a}^{2}+ab}{{a}^{2}+2ab+{b}^{2}}$,其中a=3b≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知10a=4,10b=3,求
(1)102a+103b的值;
(2)102a+3b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.为迎接新的一年到来,某校举办了“迎新杯”高中男子篮球赛,经过激烈拼搏,有两个文科班(分别记作W1,W2)与两个理科班(分别记作L1,L2)进入半决赛,半决赛中将采取随机抽签方式把上述四个班分成两组进行淘汰赛.
(1)请用树形(状)图或表格列举出所有可能的对阵情况;
(2)试求出半决赛中是文科班与理科班对阵的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,四边形ABCD是某新建厂区示意图,∠A=75°,∠B=45°,BC⊥CD,AB=500$\sqrt{2}$米,AD=200米,现在要在厂区四周建围墙,求围墙的长度有多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图(1),抛物线y=-$\frac{1}{2}$x2+x+4与x轴交于点A,B(点A在点B左侧)、直线l经过点B、C两点
(1)求A、B、C三点坐标及直线BC的函数表达式;
(2)若点F是线段OC上一动点,则在第一象限的抛物线上是否存在点E,使得△BCE≌△BCF,若存在,请直接写出点E的坐标;若不存在,请说明理由.
(3)如图(2),在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以点P、Q、A、M为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=36°,则∠P的度数为(  )
A.144°B.72°C.60°D.36°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:

其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是$\frac{8}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知二次函数y=-x2-2x+3的图象和x轴交于点A、B,与y轴交于点C,直线AC上方的抛物线上一动点P,抛物线的顶点是点D.

(1)求直线AC的解析式;
(2)求△APC面积的最大值;
(3)当△APC的面积最大时,在直线AC上有一动点M,使得△PMD的周长最小,求△PMD周长最小时点M的坐标.

查看答案和解析>>

同步练习册答案