【题目】如图,在平面直角坐标系中,点A,B的坐标为(a,0),(0,b),且满足(a﹣4)2+=0,现将OA平移到BC的位置,连接AC,点P从点B出发,沿BC﹣CA运动,速度为每秒1个单位长度,设运动时间为t秒.
(1)求出a和b的值,并写出点C的坐标;
(2)求点P在运动过程中的坐标(用含t的式子表示).
(3)点Q以每秒3.5个单位长度的速度从点A出发,在AO间往返运动,(两个点同时出发,当点P到达点A停止时点Q也停止),在运动过程中,直接写出当PQ∥OB时,点P的坐标.
【答案】(1)a=4,b=2,(4,2);(2)(4,6﹣t);(3)点P的坐标为(,2)或(,2)或(,2)或(4,)
【解析】
(1)根据非负数的性质求出a和b的值,进而得到点C的坐标;
(2)当t为0到4时,点P在线段BC上,易求其坐标;当t为4到6时,点P在线段CA上,易求其坐标;
(3)分两种情况:①点P在线段BC上,由于OQ∥BP,所以当OQ=BP时,四边形OBPQ是矩形,则有PQ∥OB.此时又分三种情况:Ⅰ)点Q的运动路线是A﹣O;Ⅱ)点Q的运动路线是A﹣O﹣A;Ⅲ)点Q的运动路线是A﹣O﹣A﹣O;②点P在线段CA上时,Q只能在A点,求出此时t的值,进而得到点P的坐标.
解:(1)∵(a﹣4)2+=0,
∴a﹣4=0,2a﹣3b﹣2=0,
∴a=4,b=2,
∴点A,B的坐标分别为(4,0),(0,2),
∵四边形OACB是矩形,
∴点C的坐标是(4,2);
(2)∵点P为从B出发沿BC﹣CA运动的一动点,速度为每秒1个单位长度,设运动时间为t秒,
∴当t为0到4时,点P在线段BC上,BP=t,所以P点坐标可表示为(t,2),
当t为4到6时,点P在线段CA上,AP=6﹣t,所以P点坐标可表示为(4,6﹣t);
(3)分两种情况:
①点P在线段BC上时,BP=t,0≤t≤4,当OQ=BP时,PQ∥OB.
(Ⅰ)点Q的运动路线是A﹣O,
∵AQ=3.5t,
∴OQ=OA﹣AQ=4﹣3.5t,
∵OQ=BP,
∴4﹣3.5t=t,
解得:t=,
∴点P的坐标为(,2);
(Ⅱ)点Q的运动路线是A﹣O﹣A,
OQ=3.5t﹣4,
∵OQ=BP,
∴3.5t﹣4=t,
解得:t=,
∴点P的坐标为(,2);
(Ⅲ)点Q的运动路线是A﹣O﹣A﹣O,
OQ=12﹣3.5t,
∵OQ=BP,
∴12﹣3.5t=t,
解得:t=,
∴点P的坐标为(,2);
②点P在线段CA上时,4<t<6,Q只能在A点,
此时t=,
6﹣,
∴点P的坐标为(4,);
综上所述,所求点P的坐标为(,2)或(,2)或(,2)或(4,).
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2-(m+1)x+m,
(1)求证:抛物线与x轴一定有交点;
(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1﹤0﹤x2,且,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学上学期的数学历次测验成绩如下表所示:
测验类别 | 平时测验 | 期中测验 | 期末测验 | ||
第1次 | 第2次 | 第3次 | |||
成绩 | 100 | 106 | 106 | 105 | 110 |
(1)该同学上学期5次测验成绩的众数为 ,中位数为 ;
(2)该同学上学期数学平时成绩的平均数为 ;
(3)该同学上学期的总成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照2:3:5的比例计算所得,求该同学上学期数学学科的总评成绩(结果保留整数)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.
请根据图中的信息,回答下列问题:
(1)这次抽样调查中共调查了 人,并请补全条形统计图;
(2)扇形统计图中18﹣23岁部分的圆心角的度数是 度;
(3)据报道,目前我国12﹣35岁网瘾人数约为3600万,请估计其中12﹣23岁的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数(为非零常数).
()若对称轴是直线.
①求二次函数的解析式.
②二次函数(为实数)图象的顶点在轴上,求的值.
()把抛物线向上平移个单位得到新的抛物线,若,求的图像落在轴上方的部分对应的的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:
如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).
A. 线段EC B. 线段AE C. 线段EF D. 线段BF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC是等边三角形,点E、F分别为射线AC、射线CB上两点,CE=BF,直线EB、AF交于点D.
(1)当E、F在边AC、BC上时如图,求证:△ABF≌△BCE.
(2)当E在AC延长线上时,如图,AC=10,S△ABC=25,EG⊥BC于G,EH⊥AB于H,HE=8,EG= .
(3)E、F分别在AC、CB延长线上时,如图,BE上有一点P,CP=BD,∠CPB是锐角,求证:BP=AD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com