精英家教网 > 初中数学 > 题目详情

【题目】某市将开展演讲比赛活动,某校对参加选拔的学生的成绩按ABCD四个等级进行统计,绘制了如下不完整的统计表和扇形统计图,

成绩等级

频数

频率

A

4

n

B

m

0.51

C

D

15

1)求mn的值;

2)求C等级所对应的扇形圆心角的度数;

3)已知成绩等级为A4名学生中有1名男生和3名女生,现从中随机挑选2名学生代表学校参加全市比赛,求出恰好选中一男生和一女生的概率

【答案】(1)m51(名),n0.04;(2)108°;(3)

【解析】

1)先求出样本容量,再根据频率=频数÷总人数可得答案;

2)先求出C等级人数,再用360°乘以C等级人数所占比例即可得;

3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.

解:(1)∵样本容量为15÷15%100(名),

m100×0.5151(名),n4÷1000.04

2C等级人数为1004511530(名),

“C等级所对应的扇形圆心角的度数为360°×108°

3)列表如下:

1

2

3

﹣﹣﹣

(女,男)

(女,男)

(女,男)

1

(男,女)

﹣﹣﹣

(女,女)

(女,女)

2

(男,女)

(女,女)

﹣﹣﹣

(女,女)

3

(男,女)

(女,女)

(女,女)

﹣﹣﹣

∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.

P(选中1名男生和1名女生)=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A是双曲线在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10

1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;

2)求销售单价为多少元时,该文具每天的销售利润最大;

3)商场的营销部结合上述情况,提出了AB两种营销方案

方案A:该文具的销售单价高于进价且不超过30元;

方案B:每天销售量不少于10件,且每件文具的利润至少为25

请比较哪种方案的最大利润更高,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线a≠0)经过A﹣10)、B30)、C0﹣3)三点,直线l是抛物线的对称轴.

1)求抛物线的函数关系式;

2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;

3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.

(Ⅰ)AC的长等于_____

(Ⅱ)在线段AC上有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张直角三角形纸片ABC,∠ACB90°AB10AC6,点DBC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如何求tan75°的值?按下列方法作图可解决问题,如图,在RtABC中,ACk,∠ACB90°,∠ABC30°,延长CB至点M,在射线BM上截取线段BD,使BDAB,连接AD,依据此图可求得tan75°的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的方程有两个实数根.

1)求的取值范围;

2)若,求的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校需要添置教师办公桌椅A、B两型共200套,已知2A型桌椅和1B型桌椅共需2000元,1A型桌椅和3B型桌椅共需3000元.

(1)求A,B两型桌椅的单价;

(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求yx的函数关系式,并直接写出x的取值范围;

(3)求出总费用最少的购置方案.

查看答案和解析>>

同步练习册答案