【题目】已知:如图(a),□ABCD的对角线AC、BD相交于点O , EF过点O与AB、CD分别相交于点E、F . 求证:OE=OF , AE=CF , BE=DF . 若上图中的条件都不变,将EF转动到图b的位置,那么上述结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),结论是否成立,说明你的理由.
【答案】解答:(a)证明:在□ABCD中,AB∥CD ,
∴ ∠1=∠2.∠3=∠4.
又 OA=OC(平行四边形的对角线互相平分),
∴ △AOE≌△COF(ASA).
∴ OE=OF , AE=CF(全等三角形对应边相等).
∵ □ABCD , ∴ AB=CD(平行四边形对边相等).
∴ AB—AE=CD—CF . 即 BE=FD .
(b) (c) (d)过程参照(a)
【解析】这是一道探究发现题型。(a)图的证明利用平行四边形的性质得三角形全等既可,(b)(c)(d)证明可参照(a)的证明,照猫画虎.
【考点精析】本题主要考查了平行四边形的性质的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,□ABCD中,对角线AC和BD相交于点O , 若AC=8,AB=6,BD=m , 那么m的取范围是( ).
A.2<m<10
B.2<m<14
C.6<m<8
D.4<m<20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N。
(1)(4分)求证:四边形CMAN是平行四边形。
(2)(4分)已知DE=4,FN=3,求BN的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com