精英家教网 > 初中数学 > 题目详情

【题目】如图,的半径为2.弦,点为优弧上一动点,交直线于点,则的最大面积是__________________

【答案】

【解析】

连结OAOB,如图1,由OA=OB=AB=2可判断△OAB为等边三角形,则∠AOB=60°,根据圆周角定理得,由于ACAP,所以∠C=60°,因为AB=2,则要使△ABC的最大面积,点CAB的距离要最大;由∠ACB=60°,可根据圆周角定理判断点C在⊙D上,且∠ADB=120°,如图2,于是当点C优弧AB的中点时,点CAB的距离最大,此时△ABC为等边三角形,从而得到△ABC的最大面积.

连结OAOB,作△ABC的外接圆D,如图1,2

OA=OB=2AB=2

∴△OAB为等边三角形,

∴∠AOB=60°,

ACAP

∴∠C=60°,

AB=2,要使△ABC的最大面积,则点CAB的距离最大,

∵∠ACB=60°,点C在⊙D上,

∴∠ADB=120°,

如图2

当点C为优弧AB的中点时,点CAB的距离最大,此时△ABC为等边三角形,且面积为

∴△ABC的最大面积为

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现有AB两个不透明袋子,分别装有3个除颜色外完全相同的小球。其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球。

1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;

2)小华和小林商定了一个游戏规则:从摇匀后的AB两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜。请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线为常数,),其对称轴是,与轴的一个交点在之间.有下列结论:①;②;③若此抛物线过两点,则,其中,正确结论的个数为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线经过点.

1)求该抛物线的函数表达式及对称轴;

2)设点关于原点的对称点为,点是抛物线对称轴上一动点,记抛物线在之间的部分为图象(包含两点),如果直线与图象有一个公共点,结合函数的图象,直接写出点纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年疫情防控期间.某小区卫生所决定购买AB两种口罩.以满足小区居民的需要.若购买A种口罩9包,B种口罩4包,则需要700元;若购买A种口罩3包.B种口罩5包.则需要380元.

1)购买人AB两种口罩每包各需名少元?

2)卫生所准备购进这两种口罩共90包,并且A种口罩包数不少于B种口罩包数的2倍,请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线经过点

1)用含的式子表示

2)直线与直线交于点,求点的坐标(用含的式子表示);

3)在(2)的条件下,已知点,若抛物线与线段恰有两个公共点,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线分别与x轴,y轴交于点,点C是第一象限内的一点,且,抛物线经过两点,与x轴的另一交点为D

1)求此抛物线的解析式;

2)判断直线的位置关系,并证明你的结论;

3)点Mx轴上一动点,在抛物线上是否存在一点N,使以四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,有两个形状完全相同的直角三角形ABCEFG叠放在一起(点A与点E重合),已知AC=8cmBC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为xs),FG的延长线交ACH,四边形OAHP的面积为ycm2)(不考虑点PGF重合的情况).

1)当x为何值时,OPAC
2)求yx之间的函数关系式,并确定自变量x的取值范围;
3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为1324?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=129961152=132251162=134564.42=19.364.52=20.254.62=21.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线yx2+bx+cx轴相交于AB两点,与y轴相交于点C,若A(﹣10),且OC3OA

1)填空:b   c   

2)在图1中,若点M为抛物线上第四象限内一动点,顺次连接ACCMMB,求四边形ACMB面积的最大值;

3)在图2中,将直线BC沿x轴翻折交y轴于点N,过点B的直线与抛物线相交于点D.若∠NBD=∠OCA,请直接写出点D的坐标.

查看答案和解析>>

同步练习册答案