证明:过D作DE⊥BC于E,
∵BD平分∠ABC,DE⊥BC,∠DAB=90°,
∴AD=DE,
由勾股定理得:AB
2=BD
2-AD
2,BE
2=BD
2-DE
2,
∴AB=BE,
∵∠A=90°,AC=AB,
∴∠C=∠ABC=
(180°-90°)=45°,
∵DE⊥BC,
∴∠DEC=90°,
∴∠EDC=180°-90°-45°=45°=∠C,
∴DE=EC,
∴BC=BE+CE=AB+AD.
分析:过D作DE⊥BC于E,根据角平分线性质求出AD=DE,推出AB=BE,求出∠C=∠EDC,推出AD=DE=CE,代入求出即可.
点评:本题主要考查对三角形的内角和定理,角平分线的性质,等腰直角三角形,勾股定理等知识点的理解和掌握,能运用性质求出AB=BE,AD=CE是解此题的关键.