精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠A=90°,AB=AC,BD是∠ABC的角平分线,请你说明AB+AD=BC.

证明:过D作DE⊥BC于E,
∵BD平分∠ABC,DE⊥BC,∠DAB=90°,
∴AD=DE,
由勾股定理得:AB2=BD2-AD2,BE2=BD2-DE2
∴AB=BE,
∵∠A=90°,AC=AB,
∴∠C=∠ABC=(180°-90°)=45°,
∵DE⊥BC,
∴∠DEC=90°,
∴∠EDC=180°-90°-45°=45°=∠C,
∴DE=EC,
∴BC=BE+CE=AB+AD.
分析:过D作DE⊥BC于E,根据角平分线性质求出AD=DE,推出AB=BE,求出∠C=∠EDC,推出AD=DE=CE,代入求出即可.
点评:本题主要考查对三角形的内角和定理,角平分线的性质,等腰直角三角形,勾股定理等知识点的理解和掌握,能运用性质求出AB=BE,AD=CE是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案