【题目】如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.
(1)△BEC是否为等腰三角形?证明你的结论;
(2)若AB=2,∠DCE=22.5°,求BC长.
【答案】(1)△BEC是等腰三角形,见解析;(2)2
【解析】
(1)由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC即可;
(2)证出AE=AB=2,根据勾股定理求出BE,即可得出BC的长.
解:(1)△BEC是等腰三角形;理由如下:
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠BCE,
∵EC平分∠DEB,
∴∠DEC=∠BEC,
∴∠BEC=∠ECB,
∴BE=BC,即△BEC是等腰三角形.
(2)∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∵∠DCE=22.5°,
∴∠DEB=2×(90°-22.5°)=135°,
∴∠AEB=180°-∠DEB=45°,
∴∠ABE=∠AEB=45°,
∴AE=AB=2,
由勾股定理得:BC=BE===2,
答:BC的长是2.
科目:初中数学 来源: 题型:
【题目】汽车油箱中的余油量(升)随汽车行驶的时间(时)的变化而变化,与之间的关系为,其中是油箱中原有的油的升数,若这辆汽车油箱中原有油60升.
(1)用表格表示行驶1到5小时过程中这辆汽车油箱中余油量与行驶时间的关系,填写下表:
行驶时间(时) | 1 | 2 | 3 | 4 | 5 |
余油量(升) |
(2)这辆车最多可行驶多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面内的两条直线有相交和平行两种位置关系
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.
(1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?
(2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如(图1),在平面直角坐标中,A(12,0),B(6,6),点C为线段AB的中点,点D与原点O关于点C对称.
(1)利用直尺和圆规在(图1)中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;
(2)在(图1)中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).
①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;
②当t=5时,CE=CF,请直接写出a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳环保,你我同行”.近几年,各大城市的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A.D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.
(1)求AD的长;
(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.
(1)求证:△BEF∽△DBC.
(2)若⊙O的半径为3,∠C=30°,求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com