【题目】如图,直线y=ax﹣a与双曲线y=(k>0)交于A、B两点,与x轴交于点D,与y轴交于点E,AC⊥y轴,垂足为点C.已知S△ACD=2,B(﹣1,m)
(1)直接写出a与k的值.
(2)求△ABC的面积.
【答案】(1)a=2,k=4;(2)6
【解析】
(1)由知S△ACD=2,可得矩形OMAC的面积为4,进而确定k的值,从而确定反比例函数的关系式,把点B坐标代入可求出m的值,确定点B的坐标,代入一次函数的关系式确定a的值;
(2)一次函数、反比例函数的关系式联立方程组求出解即可确定点A的坐标,根据三角形的面积公式进行计算即可.
(1)过点A作AM⊥x轴,垂足为M,
则S矩形OMAC=2S△ACD=4=k,
∴反比例函数的关系式为y=,
把x=﹣1代入得y=﹣4,因此点B(﹣1,﹣4),代入y=ax﹣a得,﹣4=﹣a﹣a,
解得,a=2,
答:a=2,k=4;
(2)由题意得,
,解得,,,
∴A(2,2),
∴S△ABC=×2×(2+4)=6.
科目:初中数学 来源: 题型:
【题目】某校校本课程中心为了解该校学生喜欢校本课程的情况,采取抽样调查的办法,通过书法、陶艺、灯谜、足球四门课程的选报情况调查若干名学生的兴趣爱好,要求每位同学只能选择一门自己喜欢的课程,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)在这次调查研究中,一共调查了 名学生,喜欢灯谜的人数在扇形统计图中所占的圆心角是 度:
(2)请补全频数分布折线统计图;
(3)为了平衡各校本课程的人数,需要从喜欢陶艺课程的甲、乙、丙3人中调整2人到灯谜课程,试用列表或树状图的方法求“甲、乙两人被同时调整到灯谜课程”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,CAB=60°,点O为斜边AB上一点,且OA=2,以OA为半径的⊙O与BC相切于D,与AC交于点E,连接AD.
(1)求线段CD的长;
(2)求⊙O与Rt△ABC重叠部分的面积.(结果保留准确值)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,经过原点的抛物线y=﹣x2﹣2mx(m>1)与x轴的另一个交点为A.过点P(﹣1,m)作直线PD⊥x轴于点D,交抛物线于点B,BC∥x轴交抛物线于点C.
(1)当m=2时.
①求线段BC的长及直线AB所对应的函数关系式;
②若动点Q在直线AB上方的抛物线上运动,求点Q在何处时,△QAB的面积最大?
③若点F在坐标轴上,且PF=PC,请直接写出符合条件的点F在坐标;
(2)当m>1时,连接CA、CP,问m为何值时,CA⊥CP?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在中,,在中,,连接,取的中点,连接和.
(1)若点在边上,点在边上且与点不重合,如图1,探索的关系并给予证明;
(2)如果将图1中的绕点逆时针旋转小于的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,且ABCD的周长为40,则ABCD的面积为( )
A. 24B. 36C. 40D. 48
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.
(1)求证:EB=GD;
(2)若∠DAB=60°,AB=2,AG=,求GD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有( )个.
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com