精英家教网 > 初中数学 > 题目详情

【题目】如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+EOF=156°,则∠EOF的度数是(  )

A. 88° B. 30° C. 32° D. 48°

【答案】C

【解析】

先根据角平分线的定义得到∠COF=30°,AOC=2COE再根据∠AOC+∠EOF=156°,可得2COE+∠COE30°=156°,求得∠COE=62°,进而得到∠EOF的度数

OF平分∠BOCBOC=60°,∴∠COF=30°,∴∠EOF=COECOF=COE30°.

OE平分∠AOC∴∠AOC=2COE

又∵∠AOC+∠EOF=156°,2COE+∠COE30°=156°,解得COE=62°,∴∠EOF=62°﹣30°=32°.

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,O是直线AB上一点,OD平分∠AOC.

(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.

(2)若∠AOD和∠DOE互余,且∠AOD=AOE,请求出∠AOD和∠COE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片ABCD中,AB=3cm,现将纸片折叠压平,使点A与点C重合,折痕为EF,如果sin∠BAE= ,那么重叠部分△AEF的面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)3﹣5﹣(﹣1)﹣3+12﹣(﹣12

(2)|﹣|×[﹣32÷(﹣2+(﹣2)3]

(3)先化简,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x、y满足|x﹣|+(y+1)2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.

(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:2sin45°﹣( 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:

获奖等次

频数

频率

一等奖

10

0.05

二等奖

20

0.10

三等奖

30

b

优胜奖

a

0.30

鼓励奖

80

0.40

请根据所给信息,解答下列问题:

(1)a= , b= , 且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.

查看答案和解析>>

同步练习册答案