精英家教网 > 初中数学 > 题目详情

【题目】将一些完全相同的正三角形按如图所示规律摆放,第一个图形有1个正三角形,第二个图形有5个正三角形,第三个图形有12个正三角形,,按此规律排列下去,第六个图形中正三角形的个数是(  )

A. 35 B. 41 C. 45 D. 51

【答案】D

【解析】

观察图形发现:第一个图形有1=1个正三角形,第二个图形有1+2+2=5个正三角形,第三个图有1+2+3+2+4=12个正三角形,第四个图有1+2+3+4+2+4+6=22个正三角形,由此可知第n 个图形中有1+2+3+…+n+2+4+…+2(n-1)=,由此进行计算即可得.

观察图形发现:

第一个图形有1=1个正三角形,

第二个图形有1+2+2=5个正三角形,

第三个图有1+2+3+2+4=12个正三角形,

第四个图有1+2+3+4+2+4+6=22个正三角形,

∴第n 个图形中有1+2+3+…+n+2+4+…+2(n-1)=

n=6时,=51,

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】BDCE分别是ABC的边ACAB上的高,PBD的延长线上,且BP=AC,点QCE上,CQ=AB,

求证:(1AP=AQ

2APAQ

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C平分∠ACB,若∠BA′C=110°,则∠1+2=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ABBC,∠ABC45°BEAC于点EADBC于点DBEAD相交于F

1)求证:BFAC

2)若BF3,求CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)

(1)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.

请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是   三角形;∠ADB的度数为   

(2)在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;

(3)在原问题中,过点A作直线AE⊥BD,交直线BDE,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A地在C、B两地之间,甲乙两人分别从A、B两地同时出发,相向而行,经过一段时间后相遇,甲继续向B地前进,乙继续向A地前进;甲到达B地后立即返回,在C地甲追上乙.甲乙两人相距的路程y(米)与出发的时间x(分钟)之间的关系如图所示,则A、C两地相距___米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为(小时),两车之间的距离为(千米),图中的折线表示之间的函数关系。

根据图象回答下列问题:

(1)甲地与乙地相距______千米,两车出发后______小时相遇;

(2)普通列车到达终点共需_______小时,普通列车的速度是______千米/小时;

(3)动车的速度是________千米/小时;

(4)的值为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD中,AB=3,AD=6,点E是边AD上的一个动点,把△BAE沿BE折叠,若点A的对应点A′恰落在矩形ABCD的对称轴上,则AE=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+b分别与x轴、y轴交于A,B两点,点A的坐标为(3,0),过点B的另一条直线交x轴负半轴于点C,且OB:OC=3:1.

(1)求点B的坐标及直线BC对应的函数表达式;

(2)在线段OB上存在点P,使得点P到点B,C的距离相等,试求出点P的坐标;

(3)如果在x轴上方存在点D,使得以点A,B,D为顶点的三角形与△ABC全等,请直接写出点D的坐标.

查看答案和解析>>

同步练习册答案