精英家教网 > 初中数学 > 题目详情

【题目】如图,将ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C平分∠ACB,若∠BA′C=110°,则∠1+2=_____

【答案】80°.

【解析】

连接AA′.首先求出∠BAC,再证明∠1+2=2BAC即可解决问题.

连接AA′.

A'B平分∠ABC,A'C平分∠ACB,BA'C=110°,

∴∠A′BC+A′CB=70°,

∴∠ABC+ACB=140°,

∴∠BAC=180°﹣140°=40°,

∵∠1=DAA′+DA′A,2=EAA′+EA′A,

∵∠DAA′=DA′A,EAA′=EA′A,

∴∠1+2=2(DAA′+EAA′)=2BAC=80°,

故答案为:80°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FCAB相交于点G,连接OC.

(1)求证:CD=CE;

(2)若AE=GE,求证:△CEO是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(-15)B(-20)C(-43).

(1)请画出ABC关于y轴对称的ABC,并写出点C的坐标;

(2)ABC的面积;

(3)y轴上画出点P的位置,使线段PA+PB的值最小,并直接写出PA+PB的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O△ABC的外接圆,BC⊙O的直径,AE⊙O的切线,过点BBD⊥AED

1)求证:∠DBA=∠ABC

2)如果BD=1tan∠BAD=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两名同学在同一个学校上学,B同学上学的路上经过A同学家。A同学步行,B同学骑自行车,某天,A,B两名同学同时从家出发到学校,如图,A表示A同学离B同学家的路程A(m)与行走时间(min)之间的函数关系图象B表示B同学离家的路程B(m)与行走时间(min)之间的函数关系图象.

(1)A,B两名同学的家相距________m.

(2)B同学走了一段路后,自行车发生故障,进行修理,修理自行车所用的时间是 _____min.

(3)B同学出发后______min与A同学相遇.

(4)求出A同学离B同学家的路程A与时间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,以AO为直径作半圆M,C为OB的中点,D在半圆M上,且CD⊥MD,延长AD交半圆O于点E,且AB=4,则圆中阴影部分的面积为_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在已知的ABC,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MNAB于点D,连接CD.CD=AC,A=50°,则∠ACB的度数为(  )

A. 90°B. 95°C. 100°D. 105°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一些完全相同的正三角形按如图所示规律摆放,第一个图形有1个正三角形,第二个图形有5个正三角形,第三个图形有12个正三角形,,按此规律排列下去,第六个图形中正三角形的个数是(  )

A. 35 B. 41 C. 45 D. 51

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,若分得的两个小三角形中一个三角形为等腰三角形,另一个三角形的三个内角与原来三角形的三个内角分别相等,则称这条线段叫做这个三角形的等角分割线

例如,等腰直角三角形斜边上的高就是这个等腰直角三角形的一条等角分割线

(1)如图1,在△ABC中,D是边BC上一点,若∠B=30°∠BAD=∠C=40°,求证: AD△ABC等角分割线

(2)如图2△ABC中,∠C=90°,∠B=30°;

画出△ABC等角分割线,写出画法并说明理由;

BC=3,求出中画出的等角分割线的长度.

(3)△ABC中,∠A=24°,若△ABC存在等角分割线”CD,直接写出所有符合要求的∠B的度数.

查看答案和解析>>

同步练习册答案