【题目】如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.
(1)求证:BF=AC;
(2)若BF=3,求CE的长度.
【答案】(1)见解析;(2)CE=.
【解析】
(1)由三角形的内角和定理,对顶角的性质计算出∠1=∠2,等腰直角三角形的性质得BD=AD,角边角(或角角边)证明△BDF≌△ADC,其性质得BF=AC;(2)等腰三角形的性质“三线合一”证明CE=AC,计算出CE的长度为.
解:如图所示:
(1)∵AD⊥BC,BE⊥AC,
∴∠FDB=∠FEA=∠ADC=90°,
又∵∠FDB+∠1+∠BFD=180°,
∠FEA+∠2+AFE=180°,
∠BFD=∠AFE,
∴∠1=∠2,
又∠ABC=45°,
∴BD=AD,
在△BDF和△ADC中, ,
∴△BDF≌△ADC(ASA)
∴BF=AC;
(2)∵BF=3,
∴AC=3,
又∵BE⊥AC,
∴CE=AE==.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<﹣4a;④<a<;⑤b>c.其中正确结论有______(填写所有正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.
(1)求证:∠DBA=∠ABC;
(2)如果BD=1,tan∠BAD=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,以AO为直径作半圆M,C为OB的中点,D在半圆M上,且CD⊥MD,延长AD交半圆O于点E,且AB=4,则圆中阴影部分的面积为_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC和∠ACB的角平分线相交于点O,DE经过O点,且DE//BC.
⑴请指出图中的两个等腰三角形.
⑵请选择⑴中的一个三角形,说明它是等腰三角形的理由.
⑶如果△ABC的周长是26,△ADE的周长是18,请求出BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一些完全相同的正三角形按如图所示规律摆放,第一个图形有1个正三角形,第二个图形有5个正三角形,第三个图形有12个正三角形,…,按此规律排列下去,第六个图形中正三角形的个数是( )
A. 35 B. 41 C. 45 D. 51
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)
奖金金额 获奖人数 | 20元 | 15元 | 10元 | 5元 |
商家甲超市 | 5 | 10 | 15 | 20 |
乙超市 | 2 | 3 | 20 | 25 |
(1)在甲超市摇奖的顾客获得奖金金额的中位数是 ,在乙超市摇奖的顾客获得奖金金额的众数是 ;
(2)请你补全统计图1;
(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?
(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com