精英家教网 > 初中数学 > 题目详情

【题目】如图,BC为O的直径,点D在O上,连结BD、CD,过点D的切线AE与CB的延长线交于点A,∠BCD=∠AEO,OE与CD交于点F.

(1)求证:OF∥BD;

(2)当O的半径为10,sin∠ADB=时,求EF的长.

【答案】(1)证明见解析;(2)EF=21.

【解析】

1)连接OD如图利用切线的性质得到ODAE利用圆周角定理得到∠BDC=90°,然后证明∠ADB=AEO得到BDOF

2)由(1)知sinC=sinE=sinADB=.在RtBCD利用正弦的定义计算出BD=8再利用三角形中位线性质得到OF=BD=4接着在RtEOD中利用正弦定义计算出OE=25然后计算OEOF的差即可

1)连接OD,如图,∵AEO相切ODAE∴∠ADB+∠ODB=90°.

BC为直径∴∠BDC=90°,即∠ODB+∠ODC=90°,∴∠ADB=ODC

OC=OD∴∠ODC=C而∠BCD=AEO∴∠ADB=AEOBDOF

2)由(1)知ADB=E=BCDsinC=sinE=sinADB=.在RtBCDsinC==BD=×20=8

OFBDOF=BD=4.在RtEODsinE==OE=25,EF=OEOF=254=21

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2017四川省达州市,第16题,3分)如图,矩形ABCD中,EBC上一点,连接AE,将矩形沿AE翻折,使点B落在CDF处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙OAD相切于点P.若AB=6BC=,则下列结论:①FCD的中点;②⊙O的半径是2AE=CE.其中正确结论的序号是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(2k-1)x+k2=0有两个实根x1x2

(1) 求实数k的取值范围

(2) 若方程两实根x1、x2满足x12-x22=0,求k的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(0,4),B(8,0),C(8,4),连接AC,BC得到四边形AOBC,点D在边AC上,连接OD,将边OA沿OD折叠,点A的对应点为点P,若点P到四边形AOBC较长两边的距离之比为1:3,则点P的坐标为__________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点.

(1)分别求出一次函数与反比例函数的解析式;

(2)求OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、C两点,点A在点C的右边,与y轴交于点B,点B的坐标为(0,﹣3),且OB=OC,点D为该二次函数图象的顶点.

(1)求这个二次函数的解析式及顶点D的坐标;

(2)如图,若点P为该二次函数的对称轴上的一点,连接PC、PO,使得CPO=90°,请求出所有符合题意的点P的坐标;

(3)在对称轴上是否存在一点P,使得OPC为钝角,若存在,请直接写出点P的纵坐标为yp的取值范围,若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣,y=的图象交于B、A两点,则tanOAB的值的变化趋势为(  )

A. 逐渐变小 B. 逐渐变大 C. 时大时小 D. 保持不变

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是O的直径,CD与O相切于C,BECO.

(1)求证:BC是ABE的平分线;

(2)若DC=8,O的半径OA=6,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻承温度升高而增加,温度每上升1℃,电阻增加kΩ.

(1)求Rt之间的关系式;

(2)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过4kΩ.

查看答案和解析>>

同步练习册答案