【题目】如图,在中,
,点P从点A开始,沿AB向点B以
的速度移动,点Q从B点开始沿BC以
的速度移动,如果P、Q分别从A、B同时出发:
几秒后四边形APQC的面积是31平方厘米;
若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.
科目:初中数学 来源: 题型:
【题目】点O在△ABC的内部,点D,E,F,G分别是AB,OB,OC,AC的中点.
(1)如图1,求证:四边形DEFG是平行四边形;
(2)如图2,射线AO交BC边于点H,连接DH,GH,若AB=AC,DE⊥EF,在不添加任何辅助线的情况下,请直接写出图2中所有的等腰三角形(不包含以∠BAC为内角的三角形).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:AB∥CD,CB∥DE,求∠B+∠D的度数.请填写推理依据.
解:因为AB∥CD
所以∠B=∠ ( )
因为CB∥DE,
所以∠C+∠D=180°( )
所以∠B+∠D=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A1,A2,A3在直线y=x+b上,点B1,B2,B3在x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形,若已知点A1(1,1),则点A3的纵坐标是( )
A.B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的正方形网格中,每个小正方形的边长均为1个单位, 的三个顶点都在格点上.
(1)在网格中画出向下平移3个单位得到的
;
(2)在网格中画出关于直线
对称的
;
(3)在直线上画一点
,使得
的值最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由B点向点D运动。它们的运动时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;
(2)如图2,将图1中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变。设点Q的运动速度为每秒x个单位,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x,t的值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个公共汽车站相向发车,一人在街上行走,他发现每隔8分钟就迎面开来一辆公交车,每隔24分种从背后开来一辆公交车,如果车站发车的间隔时间相同,各车的速度相同,那两车站发车的间隔时间为( )
A. 18分钟 B. 10分钟 C. 12分钟 D. 16分钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD.
(1)求证:EG=FG.
(2)若将△DEC的边EC沿AC方向移动,变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,点 D、E 分别在 BC、AC 上且 BD=CE,AD=DE, ∠C =∠ADE, 则∠B =∠C,试填写说理过程.
解因为∠EDB =∠C+∠DEC( )
即∠ADB+∠ADE =∠C+∠DEC
因为∠C =∠ADE( )
所以∠ =∠ (等式性质)
在△ABD 与△DCE 中,
所以△ABD ≌ △DCE( )
所以∠B =∠C( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com