【题目】已知直线y=﹣ x+3与两坐标轴分别相交于A,B两点,若点P,Q分别是线段AB,OB上的动点,且点P不与A,B重合,点Q不与O,B重合.
(1)若OP⊥AB于点P,△OPQ为等腰三角形,这时满足条件的点Q有几个?请直接写出相应的OQ的长;
(2)当点P是AB的中点时,若△OPQ与△ABO相似,这时满足条件的点Q有几个?请分别求出相应的OQ的长;
(3)试探究是否存在以点P为直角顶点的Rt△OPQ?若存在,求出相应的OQ的范围,并求出OQ取最小值时点P的坐标;若不存在,请说明理由.
【答案】
(1)
解:如图1中,满足条件的点Q有三个.
理由:作PM⊥OB于M,作OP的垂直平分线交OP于F,交OB于Q1.则Q1P=Q1O,△OPQ1是等腰三角形,此时OQ1= OB=2.
∵A(0,3),B(4,0),
∴OA=3,OB=4,AB=5,
∵OP⊥AB,
∴ OAOB= ABOP,
∴OP= = ,
当OQ2=OP时,△OPQ2是等腰三角形,此时OQ2= ,
当PO=PQ3时,∵PM⊥OQ3,
∴OQ3=2OM,
∵∠POM=∠POQ3,∠PMO=∠OPB,
∴△OPM∽△OBP,
∴OP2=OMOB,
∴OM= = ,
∴OQ3= .
综上所述,△OPQ为等腰三角形时,满足条件的点Q有三个,OQ的长为2或 或
(2)
解:如图2中,满足条件的点Q有2个.
理由:作PQ1⊥OB于Q1,Q2P⊥OP于Q2,
∵PA=PB,∠AOB=90°,
∴PA=PB=PO,
∴∠POQ1=∠ABO,∵∠PQ1O=∠AOB,
∴△OPQ1∽△BAO,
∵PA=PB,PQ1∥OA,
∴OQ1=BQ1= OB=2,
∵∠POQ2=∠ABO,∠OPQ2=∠AOB,
∴△OPQ2∽△BOA,
∴ = ,
∴ = ,
∴OQ2= ,
综上所述,△OPQ与△ABO相似时,满足条件的点Q有2个,OQ的长为2或
(3)
解:存在.理由如下:
如图3中,以OQ为直径作⊙G,当⊙G与AB相切于点P时,∠OPQ=90°,此时OQ的值最小.
∴设OG=GP=r,
∵AO=AP=3,
∴PB=AB=AP=2,
在Rt△PBG中,∵∠GPB=90°,PG=r,BG=4﹣r,PB=2,
∴r2+22=(4﹣r)2,
∴r= ,
∴OQ=2r=3,
∴当3≤OQ<4时,△OPQ可为直角三角形.
作PM⊥OB于M.
∵PM∥OA,
∴ = = ,
∴ = = ,
∴PM= ,BM= ,
∴OM=4﹣ = ,
∴OQ取最小值时点P的坐标( , )
【解析】(1)如图1中,满足条件的点Q有三个,分三种情形讨论即可①QO=QP,②OP=OQ,③PO=PQ.(2)如图2中,满足条件的点Q有2个.作PQ1⊥OB于Q1 , Q2P⊥OP于Q2 , 可以证明Q1、Q2满足条件,理由相似三角形的性质即可解决问题.(3)存在.以OQ为直径作⊙G,当⊙G与AB相切于点P时,∠OPQ=90°,此时OQ的值最小.由此求出OQ,即可解决问题.
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对相似三角形的判定的理解,了解相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS).
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于P(a,b)和点Q(a,b′),给出如下定义:若b′= ,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5).
(1)点( ,1)的限变点的坐标是;
(2)判断点A(﹣2,﹣1)、B(﹣1,2)中,哪一个点是函数y= 图象上某一个点的限变点?并说明理由;
(3)若点P(a,b)在函数y=﹣x+3的图象上,其限变点Q(a,b′)的纵坐标的取值范围是﹣6≤b′≤﹣3,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.
请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:
(1)求全班学生人数和m的值.
(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
分组 | 分数段(分) | 频数 |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学小组用高为1.2米的仪器测量一教学楼的高CD,如图,距CD一定距离的A处,用仪器测得教学楼顶部D的仰角为β,再在A与C之间选一点B,由B处测出教学楼顶部D的仰角为α,测得A,B之间的距离为4米,若tanα=1.6,tanβ=1.2,则他们能求出教学楼的高吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1 . 使得点P1与点O关于点A成中心对称;第二次跳跃到点P2 , 使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3 , 使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4 , 使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5 , 使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P7的坐标是 , 点P2016的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AB为⊙O的直径,点C,G都在⊙O上, = ,过点C作AB的垂线,垂足为D,连接BC,AC,BG,BG与AC相交于点E.
(1)求证:BG=2CD;
(2)若⊙O的直径为5 ,BC=5,求CE的长;
(3)如图2,在(2)条件下,延长CD,ED,分别与⊙O相交于点M,N,连接MN,求MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com