精英家教网 > 初中数学 > 题目详情

【题目】如图是抛物线y1=ax2+bx+ca≠0)图象的一部分,抛物线的顶点坐标A13),与x轴的一个交点B40),直线y2=mx+nm≠0)与抛物线交于AB两点,下列结论:

①2a+b=0②abc0方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(-10);1x4时,有y2y1

其中正确的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

【答案】C

【解析】试题解析:抛物线的顶点坐标A13),

抛物线的对称轴为直线x=-=1

∴2a+b=0,所以正确;

抛物线开口向下,

∴a0

∴b=-2a0

抛物线与y轴的交点在x轴上方,

∴c0

∴abc0,所以错误;

抛物线的顶点坐标A13),

∴x=1时,二次函数有最大值,

方程ax2+bx+c=3有两个相等的实数根,所以正确;

抛物线与x轴的一个交点为(40

而抛物线的对称轴为直线x=1

抛物线与x轴的另一个交点为(-20),所以错误;

抛物线y1=ax2+bx+c与直线y2=mx+nm≠0)交于A13),B点(40

1x4时,y2y1,所以正确.

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AOB为等腰三角形,顶点A的坐标(2,),底边OBx轴上.将AOB绕点B按顺时针方向旋转一定角度后得A′O′B,点A的对应点A′x轴上,则点O′的坐标为(  )

A. B. C. D. ,4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以直线AB上一点O为端点作射线OC使∠BOC=60°,将一个直角三角形的直角顶点放在O(注:∠DOE=90°)

(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=______

(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,则∠BOD=______

(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=AOE,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(-1t)B(3t),与y轴交于点C(0-1).一次函数y=x+n的图象经过抛物线的顶点D

)求抛物线的表达式.

)求一次函数的表达式.

)将直线绕其与轴的交点旋转,使当时,直线总位于抛物线的下方,请结合函数图象,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2x+4x轴交于AB两点(AB的左侧),与y轴交于点C

(1)求点A,点B的坐标;

(2)求△ABC的面积;

(3)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼AB高16m,远处有一塔CD,某人在楼底B处测得塔顶C的仰角为38.5°,在楼顶A处测得塔顶的仰角为22°,求塔高CD的高及大楼与塔之间的距离BC的长.

(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形中,点是边上一个动点,连结,点分别为的中点,连结交直线于点E

1)如图1,当点与点重合时,的形状是_____________________

2)当点在点M的左侧时,如图2

依题意补全图2

判断的形状,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.

(1)当点A、P、F在一条直线上时,求△ABF的面积;

(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;

(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:

(1)本次调查共抽查了 名学生

(2)两幅统计图中的m= ,n=

3)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?

查看答案和解析>>

同步练习册答案