【题目】如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根
(1)求线段BC的长度;
(2)试问:直线AC与直线AB是否垂直?请说明理由;
(3)若点D在直线AC上,且DB=DC,求点D的坐标;
(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
【答案】(1)4;(2)AC⊥AB,理由见解析;(3)D(﹣2,1);(4)点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).
【解析】
试题分析:(1)解出方程后,即可求出B、C两点的坐标,即可求出BC的长度;(2)由A、B、C三点坐标可知OA2=OCOB,所以可证明△AOC∽△BOA,利用对应角相等即可求出∠CAB=90°;(3)容易求得直线AC的解析式,由DB=DC可知,点D在BC的垂直平分线上,所以D的纵坐标为1,将其代入直线AC的解析式即可求出D的坐标;(4)A、B、P三点为顶点的三角形是等腰三角形,可分为以下三种情况:①AB=AP;②AB=BP;③AP=BP;然后分别求出P的坐标即可.
试题解析:(1)∵x2﹣2x﹣3=0,
∴x=3或x=﹣1,
∴B(0,3),C(0,﹣1),
∴BC=4;
(2)∵A(﹣,0),B(0,3),C(0,﹣1),
∴OA=,OB=3,OC=1,
∴OA2=OBOC,
∵∠AOC=∠BOA=90°,
∴△AOC∽△BOA,
∴∠CAO=∠ABO,
∴∠CAO+∠BAO=∠ABO+∠BAO=90°,
∴∠BAC=90°,
∴AC⊥AB;
(3)设直线AC的解析式为y=kx+b,
把A(﹣,0)和C(0,﹣1)代入y=kx+b,
∴,
解得:,
∴直线AC的解析式为:y=﹣x﹣1,
∵DB=DC,
∴点D在线段BC的垂直平分线上,
∴D的纵坐标为1,
∴把y=1代入y=﹣x﹣1,
∴x=﹣2,
∴D的坐标为(﹣2,1),
(4)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,
把B(0,3)和D(﹣2,1)代入y=mx+n,
∴,
解得,
∴直线BD的解析式为:y=x+3,
令y=0代入y=x+3,
∴x=﹣3,
∴E(﹣3,0),
∴OE=3,
∴tan∠BEC==,
∴∠BEO=30°,
同理可求得:∠ABO=30°,
∴∠ABE=30°,
当PA=AB时,如图1,
此时,∠BEA=∠ABE=30°,
∴EA=AB,
∴P与E重合,
∴P的坐标为(﹣3,0),
当PA=PB时,如图2,
此时,∠PAB=∠PBA=30°,
∵∠ABE=∠ABO=30°,
∴∠PAB=∠ABO,
∴PA∥BC,
∴∠PAO=90°,
∴点P的横坐标为﹣,
令x=﹣代入y=x+3,
∴y=2,
∴P(﹣,2),
当PB=AB时,如图3,
∴由勾股定理可求得:AB=2,EB=6,
若点P在y轴左侧时,记此时点P为P1,
过点P1作P1F⊥x轴于点F,
∴P1B=AB=2,
∴EP1=6﹣2,
∴sin∠BEO=,
∴FP1=3﹣,
令y=3﹣代入y=x+3,
∴x=﹣3,
∴P1(﹣3,3﹣),
若点P在y轴的右侧时,记此时点P为P2,
过点P2作P2G⊥x轴于点G,
∴P2B=AB=2,
∴EP2=6+2,
∴sin∠BEO=,
∴GP2=3+,
令y=3+代入y=x+3,
∴x=3,
∴P2(3,3+),
综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a-b|.
当A、B两点都不在原点时,(1)如图②,点A,B都在原点的右边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|(2)如图③,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|= -b-(-a)=|a-b|(3)如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=|a-b|.综上所述,数轴上A、B两点之间的距离|AB|=|a-b|请用上面的知识解答下面的问题:
(1)数轴上表示1和5的两点之间的距离是______,数轴上表示-2和-4的两点之间的距离是______,数轴上表示1和-3的两点之间的距离是______.
(2)数轴上表示x和-1的两点A和B之间的距离是______,如果|AB|=2,那么x为______.
(3)当|x+1|+|x-2|取最小值时,相应的x的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,若∠BAC=90°,
①求证;△ABD≌△ACE;②求∠BCE的度数.
(2)设∠BAC=α,∠BCE=β.如图2,则α,β之间有怎样的数量关系?请直接写出你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育课上,对七年级1班的男生进行了100米测试,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表示成绩大于15秒.
-0.8 | +1 | -1.2 | 0 | -0.7 | +0.6 | -0.4 | -0.1 |
问:(1)这个小组男生的达标率为多少?
(2)这个小组男生的平均成绩是多少秒?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com