·ÖÎö £¨1£©Çó³öEµã×ø±ê£¬´úÈë·´±ÈÀýº¯Êý½âÎöʽ¼´¿É£»
£¨2£©Çó³öBD½âÎöʽ£¬Óë°Ñy=$\frac{2}{x}$×é³É·½³Ì×飬Çó³öFµã×ø±ê£¬°ÑE£¨1£¬2£©£¬F£¨2£¬1£©·Ö±ð´úÈë½âÎöʽ£¬µÃº¯Êý½âÎöʽΪy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2£®
£¨3£©×÷OM¡ÎEF£¬Çó³öOM½âÎöʽµÃµ½Mµã×ø±ê£¬Çó³öOF¡¢EM½âÎöʽ£¬ÅжÁ³öOF¡ÎEM£¬µÃµ½ËıßÐÎOFEMΪƽÐÐËıßÐΣ¬¡÷MOEµÄÃæ»ýÓë¡÷OEFÏàµÈ£®°ÑM£¨-1£¬1£©´úÈëy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2µÃ£¬1=-1£¬ÔòMÔÚÅ×ÎïÏßÉÏ£®ÔÙÇó³ö¹ýMƽÐÐÓÚOEµÄÖ±ÏßÓëÅ×ÎïÏߵĽ»µã£¬ÒÔ¼°¹ýµãFƽÐÐÓÚOEµÄÖ±ÏßÓëÅ×ÎïÏߵĽ»µã£¬¼´¿É½â¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©ÓÉ·ÕÛ¿ÉÖª£¬AD=DE=OC=2£¬
ÔòOD=3-2=1£¬Eµã×ø±êΪ£¨1£¬2£©£¬D£¨1£¬0£©£¬
k=1¡Á2=2£¬
·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{2}{x}$£»
£¨2£©ÉèBD½âÎöʽΪy=kx+b£¬
°ÑB£¨3£¬2£©£¬D£¨1£¬0£©·Ö±ð´úÈë½âÎöʽµÃ£¬$\left\{\begin{array}{l}3k+b=2\\ k+b=0\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}k=1\\ b=-1\end{array}\right.$£¬
¹Êº¯Êý½âÎöʽΪy=x-1£»
°Ñy=$\frac{2}{x}$ºÍy=x-1×é³É·½³Ì×éµÃ£¬$\left\{\begin{array}{l}y=\frac{2}{x}\\ y=x-1\end{array}\right.$£¬
½âµÃx2-x-2=0£¬
x1=-1£¨ÉáÈ¥£©£¬x2=2£®
µÃFµã×ø±êΪ£¨2£¬1£©£¬
°ÑE£¨1£¬2£©£¬F£¨2£¬1£©·Ö±ð´úÈë½âÎöʽµÃ£¬$\left\{\begin{array}{l}4a+2b+2=1\\ a+b+2=2\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}a=-\frac{1}{2}\\ b=\frac{1}{2}\end{array}\right.$£®
¹Êº¯Êý½âÎöʽΪy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2£®
£¨3£©ÉèEF½âÎöʽΪy=ax+b£¬
°ÑE£¨1£¬2£©£¬F£¨2£¬1£©·Ö±ð´úÈë½âÎöʽµÃ$\left\{\begin{array}{l}2a+b=1\\ a+b=2\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}a=-1\\ b=3\end{array}\right.$£¬
º¯Êý½âÎöʽΪy=-x+3£¬
×÷OM¡ÎEF£¬
ÔòOM½âÎöʽΪy=-x£¬
½«y=-xÓëy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2×é³É·½³Ì×éµÃ£¬$\left\{\begin{array}{l}y=-x\\ y=-\frac{1}{2}{x}^{2}+\frac{1}{2}x+2\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}x=-1\\ y=1\end{array}\right.$£¬$\left\{\begin{array}{l}x=4\\ y=-4\end{array}\right.$£¨Éᣩ£¬
µÃM£¨-1£¬1£©£»
ÉèOF½âÎöʽΪy=mx£¬°ÑF£¨2£¬1£©´úÈë½âÎöµÃm=$\frac{1}{2}$£¬
¹Êº¯Êý½âÎöʽΪy=$\frac{1}{2}$x£¬
Á¬½ÓME£¬ÉèME½âÎöʽΪy=dx+e£¬![]()
°ÑM£¨-1£¬1£©£¬E£¨1£¬2£©·Ö±ð´úÈë½âÎöʽµÃ$\left\{\begin{array}{l}-d+e=1\\ d+e=2\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}d=\frac{1}{2}\\ e=\frac{3}{2}\end{array}\right.$£¬
º¯Êý½âÎöʽΪy=$\frac{1}{2}$x+$\frac{3}{2}$£¬
¿ÉÖªOF¡ÎME£¬
¡àËıßÐÎOFEMΪƽÐÐËıßÐΣ¬
¡à¡÷MOEµÄÃæ»ýÓë¡÷OEFÏàµÈ£®
°ÑM£¨-1£¬1£©´úÈëy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2µÃ£¬1=-1£¬ÔòMÔÚÅ×ÎïÏßÉÏ£®
¹ýµãMƽÐÐÓÚOEµÄÖ±ÏßΪy=2x+3£¬
ÓÉ$\left\{\begin{array}{l}{y=2x+3}\\{y=-\frac{1}{2}{x}^{2}+\frac{1}{2}x+2}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$£¬
¡àµãMµÄ×ø±ê»¹¿ÉÒÔΪ£¨-2£¬-1£©£®
¹ýµãFƽÐÐÓÚOEµÄÖ±ÏßΪy=2x-3£¬
ÓÉ$\left\{\begin{array}{l}{y=2x-3}\\{y=-\frac{1}{2}{x}^{2}+\frac{1}{2}x+2}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=2}\\{Y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-5}\\{y=-13}\end{array}\right.$£¬
¡àµãMµÄ×ø±ê»¹¿ÉÒÔΪ£¨-5£¬-13£©£¬
°ÑM£¨-1£¬1£©´úÈëy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2µÃ£¬1=-1£¬ÔòMÔÚÅ×ÎïÏßÉÏ£®
×ÛÉÏËùÊöµãM×ø±ê£¨-1£¬1£©»ò£¨-2£¬-1£©»ò£¨-5£¬-13£©£®
µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌâ£¬Éæ¼°´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý¡¢¶þ´Îº¯Êý½âÎöʽ¡¢·Õ۱任¡¢Æ½ÐÐËıßÐεÄÅж¨ÓëÐÔÖÊ£¬×ÛºÏÐÔÇ¿£¬ÊÇÒ»µÀºÃÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2a+3b=5ab | B£® | £¨-2a2£©3=6a6 | C£® | a3•a2=a6 | D£® | -a5¡Â£¨-a£©=a4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com