10£®Èçͼ£¬ÔÚ¾ØÐÎOABCÖУ¬OA¡¢OCÁ½±ß·Ö±ðÔÚxÖáyÖáµÄÕý°ëÖáÉÏ£¬OA=3£¬OC=2£¬¹ýOA±ßÉϵÄDµã£¬ÑØ×ÅBD·­ÕÛ¡÷ABD£¬µãAÇ¡ºÃÂäÔÚBC±ßÉϵĵãE´¦£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏó¾­¹ýµãEÓëBDÏཻÓÚµãF£¬Å×ÎïÏßy=ax2+bx+2¾­¹ýµãE¡¢F£®
£¨1£©Çó·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©Á¬½ÓOE¡¢OF¡¢EF£¬µãMÊÇÅ×ÎïÏßÉÏÒ»¶¯µã£¬ÊÇ·ñ´æÔÚµãM£¬Ê¹¡÷MOEµÄÃæ»ýÓë¡÷OEFÏàµÈ£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Çó³öEµã×ø±ê£¬´úÈë·´±ÈÀýº¯Êý½âÎöʽ¼´¿É£»
£¨2£©Çó³öBD½âÎöʽ£¬Óë°Ñy=$\frac{2}{x}$×é³É·½³Ì×飬Çó³öFµã×ø±ê£¬°ÑE£¨1£¬2£©£¬F£¨2£¬1£©·Ö±ð´úÈë½âÎöʽ£¬µÃº¯Êý½âÎöʽΪy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2£®
£¨3£©×÷OM¡ÎEF£¬Çó³öOM½âÎöʽµÃµ½Mµã×ø±ê£¬Çó³öOF¡¢EM½âÎöʽ£¬ÅжÁ³öOF¡ÎEM£¬µÃµ½ËıßÐÎOFEMΪƽÐÐËıßÐΣ¬¡÷MOEµÄÃæ»ýÓë¡÷OEFÏàµÈ£®°ÑM£¨-1£¬1£©´úÈëy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2µÃ£¬1=-1£¬ÔòMÔÚÅ×ÎïÏßÉÏ£®ÔÙÇó³ö¹ýMƽÐÐÓÚOEµÄÖ±ÏßÓëÅ×ÎïÏߵĽ»µã£¬ÒÔ¼°¹ýµãFƽÐÐÓÚOEµÄÖ±ÏßÓëÅ×ÎïÏߵĽ»µã£¬¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©ÓÉ·­ÕÛ¿ÉÖª£¬AD=DE=OC=2£¬
ÔòOD=3-2=1£¬Eµã×ø±êΪ£¨1£¬2£©£¬D£¨1£¬0£©£¬
k=1¡Á2=2£¬
·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{2}{x}$£»
£¨2£©ÉèBD½âÎöʽΪy=kx+b£¬
°ÑB£¨3£¬2£©£¬D£¨1£¬0£©·Ö±ð´úÈë½âÎöʽµÃ£¬$\left\{\begin{array}{l}3k+b=2\\ k+b=0\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}k=1\\ b=-1\end{array}\right.$£¬
¹Êº¯Êý½âÎöʽΪy=x-1£»
°Ñy=$\frac{2}{x}$ºÍy=x-1×é³É·½³Ì×éµÃ£¬$\left\{\begin{array}{l}y=\frac{2}{x}\\ y=x-1\end{array}\right.$£¬
½âµÃx2-x-2=0£¬
x1=-1£¨ÉáÈ¥£©£¬x2=2£®
µÃFµã×ø±êΪ£¨2£¬1£©£¬
°ÑE£¨1£¬2£©£¬F£¨2£¬1£©·Ö±ð´úÈë½âÎöʽµÃ£¬$\left\{\begin{array}{l}4a+2b+2=1\\ a+b+2=2\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}a=-\frac{1}{2}\\ b=\frac{1}{2}\end{array}\right.$£®
¹Êº¯Êý½âÎöʽΪy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2£®
£¨3£©ÉèEF½âÎöʽΪy=ax+b£¬
°ÑE£¨1£¬2£©£¬F£¨2£¬1£©·Ö±ð´úÈë½âÎöʽµÃ$\left\{\begin{array}{l}2a+b=1\\ a+b=2\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}a=-1\\ b=3\end{array}\right.$£¬
º¯Êý½âÎöʽΪy=-x+3£¬
×÷OM¡ÎEF£¬
ÔòOM½âÎöʽΪy=-x£¬
½«y=-xÓëy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2×é³É·½³Ì×éµÃ£¬$\left\{\begin{array}{l}y=-x\\ y=-\frac{1}{2}{x}^{2}+\frac{1}{2}x+2\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}x=-1\\ y=1\end{array}\right.$£¬$\left\{\begin{array}{l}x=4\\ y=-4\end{array}\right.$£¨Éᣩ£¬
µÃM£¨-1£¬1£©£»
ÉèOF½âÎöʽΪy=mx£¬°ÑF£¨2£¬1£©´úÈë½âÎöµÃm=$\frac{1}{2}$£¬
¹Êº¯Êý½âÎöʽΪy=$\frac{1}{2}$x£¬
Á¬½ÓME£¬ÉèME½âÎöʽΪy=dx+e£¬
°ÑM£¨-1£¬1£©£¬E£¨1£¬2£©·Ö±ð´úÈë½âÎöʽµÃ$\left\{\begin{array}{l}-d+e=1\\ d+e=2\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}d=\frac{1}{2}\\ e=\frac{3}{2}\end{array}\right.$£¬
º¯Êý½âÎöʽΪy=$\frac{1}{2}$x+$\frac{3}{2}$£¬
¿ÉÖªOF¡ÎME£¬
¡àËıßÐÎOFEMΪƽÐÐËıßÐΣ¬
¡à¡÷MOEµÄÃæ»ýÓë¡÷OEFÏàµÈ£®
°ÑM£¨-1£¬1£©´úÈëy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2µÃ£¬1=-1£¬ÔòMÔÚÅ×ÎïÏßÉÏ£®
¹ýµãMƽÐÐÓÚOEµÄÖ±ÏßΪy=2x+3£¬
ÓÉ$\left\{\begin{array}{l}{y=2x+3}\\{y=-\frac{1}{2}{x}^{2}+\frac{1}{2}x+2}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$£¬
¡àµãMµÄ×ø±ê»¹¿ÉÒÔΪ£¨-2£¬-1£©£®
¹ýµãFƽÐÐÓÚOEµÄÖ±ÏßΪy=2x-3£¬
ÓÉ$\left\{\begin{array}{l}{y=2x-3}\\{y=-\frac{1}{2}{x}^{2}+\frac{1}{2}x+2}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=2}\\{Y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-5}\\{y=-13}\end{array}\right.$£¬
¡àµãMµÄ×ø±ê»¹¿ÉÒÔΪ£¨-5£¬-13£©£¬
°ÑM£¨-1£¬1£©´úÈëy=-$\frac{1}{2}$x2+$\frac{1}{2}$x+2µÃ£¬1=-1£¬ÔòMÔÚÅ×ÎïÏßÉÏ£®
×ÛÉÏËùÊöµãM×ø±ê£¨-1£¬1£©»ò£¨-2£¬-1£©»ò£¨-5£¬-13£©£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌâ£¬Éæ¼°´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý¡¢¶þ´Îº¯Êý½âÎöʽ¡¢·­Õ۱任¡¢Æ½ÐÐËıßÐεÄÅж¨ÓëÐÔÖÊ£¬×ÛºÏÐÔÇ¿£¬ÊÇÒ»µÀºÃÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®a£¬b£¬cΪÈý½ÇÐÎÈýÌõ±ß£¬ÇÒÂú×ãab-b2+ac-bc=0£¬ÅжÏÈý½ÇÐÎÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬¡÷ACBºÍ¡÷ADE¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏBAC=¡ÏDAE=90¡ã£¬µãC¡¢D¡¢EÈýµãÔÚͬһֱÏßÉÏ£¬Á¬½áBD£¬Ôò¡ÏBDE=90¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªÔ²×¶µÄ¸ßÊÇ3cm£¬Ä¸Ïß³¤5cm£¬ÔòÔ²×¶µÄ²àÃæ»ýÊÇ20¦Ðcm2£®£¨½á¹û±£Áô¦Ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®¼ÆË㣺$\frac{{a}^{2}}{a-2}-\frac{4}{a-2}$=a+2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÃæÊÇij´ÎÊýѧ²âÑéͬѧÃǵļÆËãժ¼£¬ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®2a+3b=5abB£®£¨-2a2£©3=6a6C£®a3•a2=a6D£®-a5¡Â£¨-a£©=a4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Òòʽ·Ö½â£º-2x2+8x=-2x£¨x-4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ä³Ð£È«ÌåѧÉú»ý¼«²Î¼ÓУÍÅί×éÖ¯µÄ¡°Ï×°®Ðľè¿î¡±»î¶¯£¬ÎªÁ˽â¾è¿îÇé¿ö£¬Ëæ»ú³éÈ¡Á˲¿·ÖѧÉú²¢¶ÔËûÃǵľè¿îÇé¿ö×÷ÁËͳ¼Æ£¬»æÖÆÁËÁ½·ù²»ÍêÕûµÄͳ¼ÆÍ¼£¨Í³¼ÆÍ¼ÖÐÿ×麬×îСֵ£¬²»º¬×î´óÖµ£©£®
ÇëÒÀ¾ÝͼÖÐÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣺

£¨1£©ÇóËæ»ú³éÈ¡µÄѧÉúÈËÊý£®
£¨2£©Ìî¿Õ£º£¨Ö±½ÓÌî´ð°¸£©
¢Ù¡°20Ôª¡«25Ôª¡±²¿·Ö¶ÔÓ¦µÄÔ²ÐĽǶÈÊýΪ72¡ã£®
¢Ú¾è¿îµÄÖÐλÊýÂäÔÚ15Ôª¡«20Ôª£¨Ìî½ð¶î·¶Î§£©£®
£¨3£©Èô¸ÃУ¹²ÓÐѧÉú3500ÈË£¬Çë¹ÀËãȫУ¾è¿î²»ÉÙÓÚ20ÔªµÄÈËÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁн»Í¨±ê־ͼÖУ¬¼ÈÊÇÖÐÐĶԳÆÍ¼ÐÎÓÖÊÇÖá¶Ô³ÆÍ¼ÐεÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸