精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(-3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)

解:(1)∵抛物线y=ax2+bx+c经过点A(-3,0),B(0,3),C(1,0),

解得
所以,抛物线的解析式为y=-x2-2x+3;

(2)①∵A(-3,0),B(0,3),
∴OA=OB=3,
∴△AOB是等腰直角三角形,
∴∠BAO=45°,
∵PF⊥x轴,
∴∠AEF=90°-45°=45°,
又∵PD⊥AB,
∴△PDE是等腰直角三角形,
∴PD越大,△PDE的周长越大,
易得直线AB的解析式为y=x+3,
设与AB平行的直线解析式为y=x+m,
联立
消掉y得,x2+3x+m-3=0,
当△=32-4×1×(m-3)=0,
即m=时,直线与抛物线只有一个交点,PD最长,
此时x=-,y=-+=
∴点P(-)时,△PDE的周长最大;

②抛物线y=-x2-2x+3的对称轴为直线x=-=-1,
(i)如图1,点M在对称轴上时,过点P作PQ⊥对称轴于Q,

在正方形APMN中,AP=PM,∠APM=90°,
∴∠APF+∠FPM=90°,∠QPM+∠FPM=90°,
∴∠APF=∠QPM,
∵在△APF和△MPQ中,

∴△APF≌△MPQ(AAS),
∴PF=PQ,
设点P的横坐标为n(n<0),则PQ=-1-n,
即PF=-1-n,
∴点P的坐标为(n,-1-n),
∵点P在抛物线y=-x2-2x+3上,
∴-n2-2n+3=-1-n,
整理得,n2+n-4=0,
解得n1=(舍去),n2=
-1-n=-1-=
所以,点P的坐标为();

(ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q,

∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°,
∴∠FPA=∠QAN,
又∵∠PFA=∠AQN=90°,PA=AN,
∴△APF≌△NAQ,
∴PF=AQ,
设点P坐标为P(x,-x2-2x+3),
则有-x2-2x+3=-1-(-3)=2,
解得x=-1(不合题意,舍去)或x=--1,
此时点P坐标为(--1,2).
综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(--1,2).
分析:(1)把点A、B、C的坐标代入抛物线解析式,利用待定系数法求二次函数解析式解答即可;
(2)①根据点A、B的坐标求出OA=OB,从而得到△AOB是等腰直角三角形,根据等腰直角三角形的性质可得∠BAO=45°,然后求出△PED是等腰直角三角形,根据等腰直角三角形的性质,PD越大,△PDE的周长最大,再判断出当与直线AB平行的直线与抛物线只有一个交点时,PD最大,再求出直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,与抛物线解析式联立消掉y,得到关于x的一元二次方程,利用根的判别式△=0列式求出m的值,再求出x、y的值,从而得到点P的坐标;
②先确定出抛物线的对称轴,然后(i)分点M在对称轴上时,过点P作PQ⊥对称轴于Q,根据同角的余角相等求出∠APF=∠QPM,再利用“角角边”证明△APF和△MPQ全等,根据全等三角形对应边相等可得PF=PQ,设点P的横坐标为n,表示出PQ的长,即PF,然后代入抛物线解析式计算即可得解;(ii)点N在对称轴上时,同理求出△APF和△ANQ全等,根据全等三角形对应边相等可得PF=AQ,根据点A的坐标求出点P的纵坐标,再代入抛物线解析式求出横坐标,即可得到点P的坐标.
点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,等腰直角三角形的判定与性质,正方形的性质,全等三角形的判定与性质,抛物线上点的坐标特征,(2)确定出△PDE是等腰直角三角形,从而判断出点P为平行于AB的直线与抛物线只有一个交点时的位置是解题的关键,(3)根据全等三角形的性质用点P的横坐标表示出纵坐标或用纵坐标求出横坐标是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案