精英家教网 > 初中数学 > 题目详情

如图为一△ABC,其中D、E两点分别在AB、AC上,且AD=31,DB=29,AE=30,EC=32.若∠A=50°,则图中∠1、∠2、∠3、∠4的大小关系,下列何者正确?


  1. A.
    ∠1>∠3
  2. B.
    ∠2=∠4
  3. C.
    ∠1>∠4
  4. D.
    ∠2=∠3
D
分析:本题需先根据已知条件得出AD与AC的比值,AE与AB的比值,从而得出△ADE∽△ACB,最后即可求出结果.
解答:∵AD=31,BD=29,
AE=30,EC=32,
∴AB=31+29=60,
AC=30+32=62,



∵∠A=∠A,
∴△ADE∽△ACB,
∴∠2=∠3.
故选D.
点评:本题主要考查了相似三角形的判定与性质,在解题时要注意找出题中的等量关系,证出三角形相似是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积.
精英家教网
∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=
1
2
AB•r,S△OBC=
1
2
BC•r,S△OCA=
1
2
CA•r
∴S△ABC=
1
2
AB•r+
1
2
BC•r+
1
2
CA•r=
1
2
l•r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、an,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海沧区一模)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连结CE、BF.
(1)请你添加一个条件
DE=DF
DE=DF
,使得△BDF≌△CDE(不添加辅助线),并证明:△BDF≌△CDE;
(2)满足(1)的条件下,若△ABC是等腰直角三角形,∠BAC=90°,点E为AD的中点,连结BE,CF,已知BC=4,则四边形BECF是什么图形?其周长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2005•东城区一模)如图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=
12
AB,点E、F分别为BC、AC的中点,请你在图中找出一组相等关系,使其满足上述所有条件,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•邢台一模)(1)如图,RT△ABC的三边长分别为3、4、5,求△ABC内切圆的半径;
(2)如图,△ABC的三边长分别为a、b、c,面积为S,其内切圆的半径为r,试用a、b、c和S表示r;
(3)如图,四边形ABCD的周长为l,面积为S,其内切圆的半径为r,试用l、s表示r;
(4)若一个n变形的周长为l,面积为S,其内切圆的半径为r,直接写出r、l和S的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•廊坊一模)在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们把每个小正方形的顶点称为格点,以格点为顶点的图形称之为格点图形.如图中的△ABC称之为格点△ABC,现将△ABC绕点A顺时针旋转180度,并将其边长扩大为原来的2倍,则变形后点B的对应点所在的位置是甲、乙、丙、丁当中的
点.

查看答案和解析>>

同步练习册答案