【题目】如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.
(1)连接AF,CE,求证:四边形AFCE为菱形;
(2)求菱形AFCE的边长.
【答案】(1)证明见解析;(2)菱形AFCE的边长为5cm.
【解析】试题分析:(1)利用AAS或ASA证明△AOE≌△COF,可得OE=OF,又因OA=OC可判定四边形AFCE是平行四边形,又因AC⊥EF,根据菱形的判定即可得四边形AFCE为菱形;(2)设菱形的边长为x,在Rt△ABF中,根据勾股定理可列方程(8-x)+4=x,解得x的值即可得菱形AFCE的边长.
试题解析:(1)证明:∵四边形ABCD是矩形
∴AD∥BC
∴∠CAD=∠ACB,∠AEF=∠CFE
∵EF垂直平分AC,垂足为O
∴△AOE≌△COF∴OE=OF
∵OA=OC∴四边形AFCE为平行四边形
又∵EF⊥AC∴四边形AFCE为菱形
(2)设菱形的边长为x,由勾股定理得
(8-x)+4=x
解得x=5
所以菱形的边长为5㎝。
科目:初中数学 来源: 题型:
【题目】在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰△ABC中,AB=AC,∠A=36°,D是AC上的一点,AD=BD,则以下结论中正确的有( )
①△BCD是等腰三角形;②点D是线段AC的黄金分割点;③△BCD∽△ABC;④BD平分∠ABC.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形有一边上的中线长恰好等于这条边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知中,,一条直角边为3,如果是“有趣三角形”,那么这个三角形“有趣中线”的长等于________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填空,把下面的推理过程补充完整,并在括号内注明理由:
如图,已知A、B、C、D在同一直线上,AE∥DF,AC=BD,∠E=∠F,求证:BE∥CF.
证明:∵AE∥DF(已知)
∴_________(两直线平行,内错角相等)
∵AC=BD(已知)
又∵AC=AB+BC,BD=BC+CD
∴________(等式的性质)
∵∠E=∠F(已知)
∴△ABE≌△DCF(___________)
∴∠ABE=∠DCF(_________________)
∵ABF+∠CBE=180°,∠DCF+∠BCF=180°
∴∠CBE=∠BCF(__________________)
∴BE∥CF(________________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB分别与x轴、y轴交于点B、C,与直线OA交于点A.已知点A的坐标为(﹣3,5),OC=4.
(1)分别求出直线AB、AO的解析式;
(2)求△ABO的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+4;⑤S△AOC+S△AOB=6+,其中正确的结论是( )
A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com