【题目】在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
【答案】(1);(2).
【解析】试题分析:(1)在Rt△OPB中,由OP=OB·tan∠ABC可求得OP=,连接OQ,在Rt△OPQ中,根据勾股定理可得PQ的长;(2)由勾股定理可知OQ为定值,所以当当OP最小时,PQ最大.根据垂线段最短可知,当OP⊥BC时OP最小,所以在Rt△OPB中,由OP=OB·sin∠ABC求得OP的长;在Rt△OPQ中,根据勾股定理求得PQ的长.
试题解析:解:(1)∵OP⊥PQ,PQ∥AB,∴OP⊥AB.
在Rt△OPB中,OP=OB·tan∠ABC=3·tan30°=.
连接OQ,在Rt△OPQ中, .
(2) ∵
∴当OP最小时,PQ最大,此时OP⊥BC.
OP=OB·sin∠ABC=3·sin30°=.
∴PQ长的最大值为.
科目:初中数学 来源: 题型:
【题目】在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测倾器测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.则河的宽度为________米(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=6,点D在边AC上,AD的中垂线交BC于点E.若∠AED=∠B,CE=3BE,则CD等于( )
A. B. 2C. D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连结BH.
(1)求证:AC=CD;
(2)若OB=2,求BH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为( )
A.9 B.10 C.3 D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是⊙O的内接三角形,AB=AC,∠ABC的平分线BE交⊙O于点E,∠ACB的平分线CF交⊙O于点F,BE和CF相交于点D,四边形AFDE是菱形吗?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a,b,c满足关系式.
(1)求a,b,c的值;
(2)如果在第二象限内有一点P(m,),使四边形ABOP的面积与三角形ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知中,点是延长线上的一点,过点作,平分,平分,与交于点.
(1)如图1,若,,直接求出的度数:__________;
(2)如图2,若,试判断与的数量关系,并证明你的结论;
(3)如图3,若,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.
(1)连接AF,CE,求证:四边形AFCE为菱形;
(2)求菱形AFCE的边长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com