【题目】甘蔗富含大量铁、钙、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一,为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了20%,所购进甘蔗的数量比第一次少了25千克.
(1)求该商家第一次购买云南甘蔗的进价是每千克多少元?
(2)假设商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?
科目:初中数学 来源: 题型:
【题目】合肥享有“中国淡水龙虾之都”的美称.甲乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲,y乙(单位元)与人数之间的函数关系如图所示.
(1)直接写出y甲,y乙关于x的函数关系式.
(2)小王公司想在“龙虾节”期间组织团建,在甲乙两家店就餐,如何选择甲乙两家美食店吃小龙虾更省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理 线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.
定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.
定理应用:
(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.
(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.在一次课题设计活动中,小明对修建一座87m长的水库大坝提出了以下方案;大坝的横截面为等腰梯形,如图,∥,坝高10m,迎水坡面的坡度,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面的坡度进行修改,修改后的迎水坡面的坡度。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,河坝横断面背水坡AB的坡角是45°,背水坡AB的长度为20米,现在为加固堤坝,将斜坡AB改成坡度为1∶2的斜坡AD.(备注:AC⊥CB)
(1)求加固部分的横截面即△ABD的面积;
(2)若该堤坝的长度为100米,某工程队承包了这一加固的土石方工程,为抢在汛期到来之际提前完成这一工程,现在每天完成的土石方比原计划增加25%,这样实际比原计划提前10天完成了这项工程,求原计划每天完成的土石方.(提示:土石方=横截面×堤坝长度)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.
(1)求证:AO=EO;
(2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:
(1)未降价之前,某商场衬衫的总盈利为 元.
(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利 元,平均每天可售出 件(用含x的代数式进行表示)
(3)请列出方程,求出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子因式分解呢?因为(x+p)(x+q)= x2+(p+q)x+pq,所以,根据因式分解是与整式乘法方向相反的变形,利用这种关系可得:x2+(p+q)x+pq=(x+p)(x+q).如:x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2),上述过程还可以形象的用十字相乘的形式表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项的系数,如下图.这样,我们可以得到:x2+3x+2= (x+1)(x+2),利用这种方法,将下列多项式分解因式:
(1)x2+7x+10
(2)-2x2-6x+36
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com