精英家教网 > 初中数学 > 题目详情

【题目】201811月重庆潮童时装周在重庆渝北举了八场秀,云集了八大国内外潮童品牌,不仅为大家带来了一场品牌走秀盛会,更让人们将目光转移到了00后、10后童模群体身上,开启服装新秀潮流,某大型商场抓住这次商机购进AB两款新童装共1000件进行试销售,其中每件A款童装进价160元,每件B款童装进价200元,若该商场本次以每件A款童装按进价加价17元,每件B款童装按进价加价15%进行销售,全部销售完,共获利24800元.

1)求购进AB两款童装各多少件?

2)元且期间该商场又购进AB两款童装若干件并展开了降价促销活动,在促销期间,该商场将每件A款童装按进价提高(m+10%进行销售,每件B款童装装按售价降低m%销售.结果在元旦的销售活动中A款童装的销售量比(1)中的销售量降低了m%B款童装销售量比(1)中销售量上升了20%,两款服装销售利润之和比(1)中利润多了3200元.求m的值.

【答案】1AB两款童装各400件、600件;(2m的值是1

【解析】

1)根据题意可以列出相应的方程,从而可以解答本题;

2)根据题意可以列出相应的方程,从而可以求得m的值.

解:(1)设购进A款童装x件,则B款童装(1000x)件,

17x+200×15%×1000x)=24800

解得,x400

1000x600

答:购进AB两款童装各400件、600件;

2)由题意可得,

160×m+10%×4001m%+[200×1+15%)(1m%)﹣200]×6001+20%)=24800+3200

解得,m1m0(舍去),

答:m的值是1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“知识改变命运,科技繁荣祖国”,我市中小学每年都要举办一届科技运动会,下图为我市某校今年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:

(1)该校参加车模、建模比赛的人数分别是 人和 人:

(2)该校参加航模比赛的总人数是 人,空模所在扇形的圆心角的度数是 ,并把条形统计图补充完整.

(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖,今年我市中小学参加航模比赛人共有2485人,请你估算今年参加航模比赛的获奖人数约是多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由DAM平移得到.若过点E作EHAC,H为垂足,则有以下结论:点M位置变化,使得DHC=60°时,2BE=DM;无论点M运动到何处,都有DM=HM;③无论点M运动到何处,CHM一定大于135°.其中正确结论的序号为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE.

(1)求证:OA=OB

(2)已知AB=4,OA=4,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从﹣2,﹣13这三个数中随机抽取两个数分别记为xy,把点M的坐标记为(xy),若点N为(03),则在平面直角坐标系内直线MN经过过四象限的概率为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名同学在一次用频率去估计概率的实验中,绘出了某一结果出现的频率的折线图,则符合这一结果的实验可能是

A. 掷一枚正六面体的骰子,出现1点的概率

B. 抛一枚硬币,出现正面的概率

C. 任意写一个整数,它能被2整除的概率

D. 从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点的坐标是,点的坐标是,以线段为直径作,交轴的正半轴于点,过三点作抛物线.

1)求抛物线的解析式;

2)连结,点延长线上一点,的角平分线于点,连结,在直线上找一点,使得的周长最小,并求出此时点的坐标;

3)在(2)的条件下,抛物线上是否存在点,使得,若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,对角线ACBD相交于点O,且OA=OB

1)求证:四边形ABCD是矩形;

2)若AB=2,∠AOB=60°,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

同步练习册答案