精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AD=1CD=,连接AC,将线段ACAB分别绕点A顺时针旋转90°AEAF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为__.

【答案】

【解析】

由勾股定理得到AC=2,由三角函数的定义得到∠CAB=30°,根据旋转的性质得到∠CAE=BAF=90°,求得∠BAG=60°,然后根据图形的面积即可求得.

在矩形ABCD中,
AD=1CD=

AC=2tanCAB=

∴∠CAB=30°
∵线段ACAB分别绕点A顺时针旋转90°AEAF
∴∠CAE=BAF=90°
∴∠BAG=60°
AG=AB=

∴阴影部分面积=SABC+S扇形ABG-SACG

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】滴滴快车是一种便捷的出行工具,某地的计价规则如下表:

计费项目

里程费

时长费

远途费

单价

2/公里

/分钟

1/公里

注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收1元.

小李与小张分别从不同地点,各自同时乘坐滴滴快车,到同一地点相见,已知到达约定地点时他们的实际行车里程分别为7公里与9公里,两人付给滴滴快车的乘车费相同.其中一人先到达约定地点,他等候另一人的时间等于他自己实际乘车时间,且恰好是另一人实际乘车时间的一半,则小李的乘车费为______元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,BAD=60°,点C为弧BD的中点,则AC的长是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,将A(1,0)、B(0,2)、C(2,3)、D(3,1)用线段依次连接起来形成一个图案(图案).将图案绕点O逆时针旋转90°得到图案;以点O为位似中心,位似比为1:2将图案在位似中心的异侧进行放大得到图案

(1)在坐标系中分别画出图案和图案

(2)若点D在图案中对应的点记为点E,在图案中对应的点记为点F,则SDEF=

(3)若图案上任一点P(A、B除外)的坐标为(a,b),图案中与之对应的点记为点Q,图案中与之对应的点记为点R,则SPQR= .(用含有a、b的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】居民区内的广场舞引起媒体关注,民勤电视台为此进行过专访报到.小平想了解本小区居民对广场舞的看法,进行了一次抽样调查,把居民对广场舞的看法分为四个层次:.非常赞同;.赞同但要有时间限制;.无所谓;.不赞同.并将调查结果绘制了图①和图②两幅不完整的统计图.请你根据图中提供的信息解答下列问题:

1)求本次被抽查的居民有多少人?

2)将图①和图②补充完整.

3)求图②中层次所在扇形的圆心角度数.

4)估计该小区5000名居民中对广场舞的看法表示赞同(包括层次和层次)的大约有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为圆外一点,AC交⊙O于点DBC2=CDCA,弦ED=BDBEACF.

(1)求证:BC为⊙O切线;

(2)判断BCF的形状并说明理由;

(3)已知BC=15CD=9,求tanADE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】[问题情境]

我们知道数轴上的两点AB的距离|AB||xAxB|,那么如果已知平面上两点P1(x1y1)P2(x2y2),如何求P1P2的距离d(P1P2)呢?

下面我们就来研究这个问题.

问题 一般地,已知平面上两点P1(x1y1)P2(x2y2),如何求点P1P2的距离?

: 当x1≠x2y1y2时,|P1P2||x2x1|

x1x2y1≠y2时,|P1P2||y2y1|

x1≠x2y1≠y2时,如图,

RtP1QP2中,由勾股定理知,

|P1P2|2|P1Q|2|QP2|2,所以d(P1P2)|P1P2|.

归纳:两点P1(x1y1)P2(x2y2)间的距离公式d(P1P2)|P1P2|.

解决问题:

1)已知A2-4),B-23),求dA,B

2)已知点A(1,2)B(3,4)C(5,0),求证:△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数图象的顶点在原点O,经过点A1);点F01)在y轴上.直线y=﹣1y轴交于点H

1)求二次函数的解析式;

2)点P是(1)中图象上的点,过点Px轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP

3)当△FPM是等边三角形时,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,按如下步骤作图:

(1)以A圆心,AB长为半径画弧;

(2)以C为圆心,CB长为半径画弧,两弧相交于点D;

(3)连接BD,与AC交于点E,连接AD,CD.

①四边形ABCD是中心对称图形;

②△ABC≌△ADC;

③AC⊥BD且BE=DE;

④BD平分∠ABC.

其中正确的是(

A.①② B.②③ C.①③ D.③④

查看答案和解析>>

同步练习册答案