分析 (1)延长AE交BC的延长线与点M,要证明EF⊥AE,只要证明△AFM是等腰三角形,再证明E是AM的中点就可以证得.
(2)同(1),延长AE交BC的延长线与点M,要证明EF⊥AE,只要证明△AFM是等腰三角形,再证明E是AM的中点就可以证得;
(3)同(1),延长AE交BC的延长线与点M,要证明EF⊥AE,只要证明△AFM是等腰三角形,再证明E是AM的中点就可以证得.
解答 (1)证明:如图①,延长AE交BC的延长线与点M.![]()
∵在正方形ABCD中,AD∥BC,∠FAE=∠EAD,
∴∠DAM=∠M,
又∵DE=EC,∠AED=∠MEC,
在△AED与△MEC中,
$\left\{\begin{array}{l}{DE=EC}\\{∠AED=∠MEC}\\{∠DAM=∠M}\end{array}\right.$,
∴△AED≌△MEC,
∴AE=EM,∠EAD=∠FAE=∠M,
∴AF=FM,
∴FE⊥AE.
(2)如图②,延长AE交BC的延长线与点M.![]()
∵在长方形ABCD中,AD∥BC,∠FAE=∠EAD,
∴∠DAM=∠M,
又∵DE=EC,∠AED=∠MEC,
在△AED与△MEC中,
$\left\{\begin{array}{l}{DE=EC}\\{∠AED=∠MEC}\\{∠DAM=∠M}\end{array}\right.$,
∴△AED≌△MEC,
∴AE=EM,∠EAD=∠FAE=∠M,
∴AF=FM,
∴FE⊥AE.
(3)解:EF⊥AE仍然成立.理由如下:![]()
如图③,延长AE交BC的延长线与点M,
∵在菱形ABCD中,AD∥BC,∠FAE=∠EAD,
∴∠DAM=∠M,
又∵DE=EC,∠AED=∠MEC,
在△AED与△MEC中,
$\left\{\begin{array}{l}{DE=EC}\\{∠AED=∠MEC}\\{∠DAM=∠M}\end{array}\right.$,
∴△AED≌△MEC,
∴AE=EM,∠EAD=∠FAE=∠M,
∴AF=FM,
∴FE⊥AE
点评 本题主要考查了等腰三角形的性质:三线合一定理,把证明垂直的问题转化为证明等腰三角形底边上的中线的问题.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 34.5% | B. | 33% | C. | 30% | D. | 27% |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ∠A=∠C-∠B | B. | ∠A:∠B:∠C=1:2:3 | C. | a2=(b+c)(b-c) | D. | a=1,b=2,c=3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com