精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-2的度数是(

A. 32° B. 64° C. 65° D. 70°

【答案】B

【解析】

此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案

如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置

∠B=∠D=32° ∠BEH=∠DEH

∠1=180-∠BEH-∠DEH=180-2∠DEH

∠2=180-∠D-∠DEH-∠EHF

=180-∠B-∠DEH-(∠B+∠BEH)

=180-∠B-∠DEH-(∠B+∠DEH)

=180-32°-∠DEH-32°-∠DEH

=180-64°-2∠DEH

∠1-∠2=180-2∠DEH-(180-64°-2∠DEH)

=180-2∠DEH-180+64°+2∠DEH

=64°

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点ABC分别是⊙O上的点,∠B=60°AC=3CD⊙O的直径,PCD延长线上的一点,且AP=AC

1)求证:AP⊙O的切线;

2)求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径。点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,P(3,60°)P(3,300°)P(3,420°),则点P关于点O成中心对称的点Q的极坐标可以表示为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),,按此方式依次操作,则第6个正六边形的边长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,双曲线y=与直线y=2x+2交于点A1a).

(1)求a,m的值;

(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,CD的右侧,BE平分ABC,DE平分ADC,BE、DE所在直线交于点E,ADC=70°.

(1)EDC的度数;

(2)ABC=n°,BED的度数(用含n的代数式表示);

(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图1,在四边形ABCD中,点E、F分别是AB、CD的中点.过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连结GA、GB、GC、GD、EF,若AGD=BGC.

1求证:AD=BC;

2求证:AGD∽△EGF;

3如图2,若AD、BC所在直线互相垂直,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,两半径为r的等圆⊙O1⊙O2相交于M,N两点,且⊙O2过点O1.过M点作直线AB垂直于MN,分别交⊙O1⊙O2于A,B两点,连接NA,NB.

(1)猜想点O2⊙O1有什么位置关系,并给出证明;

(2)猜想NAB的形状,并给出证明;

(3)如图2,若过M的点所在的直线AB不垂直于MN,且点A,B在点M的两侧,那么(2)中的结论是否成立,若成立请给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

1)本次调查中,张老师一共调査了   名同学,其中C类女生有   名,D类男生有   名;

2)将上面的条形统计图补充完整;

3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行一帮一互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

同步练习册答案