【题目】某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?
【答案】(1)y=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)每件商品的售价为34元时,商品的利润最大,为1960元;(3)售价为32元时,利润为1920元.
【解析】
试题分析:(1)销售利润=每件商品的利润×(180﹣10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;
(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可;
(3)让(1)中的y=1920求得合适的x的解即可.
解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);
(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).
∵﹣10<0,
∴当x==4时,y最大=1960元;
∴每件商品的售价为34元.
答:每件商品的售价为34元时,商品的利润最大,为1960元;
(3)1920=﹣10x2+80x+1800
x2﹣8x+12=0,
(x﹣2)(x﹣6)=0,
解得x=2或x=6,
∵0≤x≤5,
∴x=2,
∴30+2=32(元)
∴售价为32元时,利润为1920元.
科目:初中数学 来源: 题型:
【题目】已知:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.
(1)以B为坐标原点,AB所在直线为x轴,建立直角坐标系;
(2)写出四边形各顶点的坐标;
(3)计算四边形的面积;
(4)画出将四边形向右平移5个单位,向下平移2个单位得到的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:
候选人 | 甲 | 乙 | |
测试成绩(百分制) | 面试 | 86 | 92 |
笔试 | 90 | 83 |
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。根据两人的平均成绩,公司将录取___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若△MNP≌△NMQ且MN = 8cm, NP = 7cm, PM = 6cm, 则MQ的长是( )
A. 8cm B. 7cm C. 6cm D. 5cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,BD是△ABC的角平分线,P是射线AC上任意一点 (不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交线段BD于E.
(1)如图①,当点P在线段AC上时,说明∠PDE=∠PED.
(2)画出∠CPQ的角平分线交线段AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com