【题目】如图,在正方形ABCD中,点E是对角线BD上任意一点,过点E作EF⊥BC于点F,作EG⊥CD于点G,若正方形ABCD的周长为a,则四边形EFCG的周长为_____.
【答案】
【解析】
由ABCD为正方形,根据正方形的性质可知四条边相等,且∠CDB=∠CBD=45°,进而得到△DEG与△BEF都是等腰直角三角形,即EG与DG相等,EF与BF相等,由根据三个角为直角的四边形为矩形得到EFCG为矩形,从而得到对边EG与FC相等,EF与GC相等,故把四边形EFCG的周长转换为正方形的两条边相加,即为正方形周长的一半,由正方形的周长为a即可求出四边形EFCG的周长.
∵ABCD为正方形,
∴∠DBC=∠BDC=45°,AB=BC=CD=AD,
又∵EF⊥BC,EG⊥CD,
∴∠EFC=∠EGC=90°,又∠C=90°,
∴四边形EFCG为矩形,
∴EG=FC,EF=GC,
∵△BEF和△EDG都为等腰直角三角形,
∴DG=EG,EF=BF,
则四边形EFCG的周长=EF+FC+CG+EG
=DG+GC+CF+FB=DC+BC=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是______。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1的函数解析式为y=﹣2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.
(1)求直线l2的函数解析式;
(2)求△ADC的面积;
(3)在直线l2上是否存在点P,使得△ADP面积是△ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3)。双曲线的图像经过BC的中点D,且与AB交于点E,连接DE。
(1)求k的值及点E的坐标;
(2)若点F是边上一点,且△FBC∽△DEB,求直线FB的解析式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断
A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长度为1个单位长度的小正方形组成的大正方形中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;
(2)△ABC的面积为 ;
(3)△ABC的周长为 ;(保留根号)
(4)在直线l上找一点P,使PB+PC的长最短.(保留痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:△NDE≌△MAE;
(2)求证:四边形AMDN是平行四边形;
(3)当AM的值为何值时,四边形AMDN是矩形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ABC=∠ACB,BD、CD、BE分别平分△ABC的内角∠ABC、外角∠ACP、外角∠MBC.以下结论:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠A+2∠BEC=180°;⑤DB平分∠ADC.其中正确的结论有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com