【题目】如图,半圆的圆心与坐标原点重合,半圆的半径1,直线的解析式为若直线与半圆只有一个交点,则t的取值范围是________.
【答案】或
【解析】
若直线与半圆只有一个交点,则有两种情况:直线和半圆相切于点C或从直线A开始到直线过点B结束(不包括直线过点A),当直线和半圆相切于点C时,根据直线的解析式知直线与x轴所形成的的锐角是45°,从而求得∠DOC=45°,即可得出点C的坐标,进一步得出t的值;当直线过点B时,直线根据待定系数法求得t的值.
若直线与半圆只有一个交点,则有两种情况:直线和半圆相切于点C或从直线A开始到直线过点B结束(不包括直线过点A)
当直线和半圆相切于点C时,直线与x轴所形成的的锐角是45°,
∴∠DOC=45°,
又∵半圆的半径1,
∴CD=OD=
∴
代入解析式,得
当直线过点A时,把A代入直线解析式,得
当直线过点B时,把B代入直线解析式,得
即当或,直线和半圆只有一个交点.
科目:初中数学 来源: 题型:
【题目】将含有 30°角的直角三角板 OAB 如图放置在平面直角坐标系中,OB 在 x轴上,若 OA=2,将三角板绕原点 O 顺时针旋转 75°,则点 A 的对应点 A′ 的坐标为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形纸片ABCD中,AB=3,AD=9,折叠纸片ABCD,使顶点C落在边AD上的点G处,折痕分别交边AD、BC于点E、F,则△GEF的面积最大值是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边△ABC边长为2,D为BC中点,连接AD.点O在线段AD上运动(不含端点A、D),以点O为圆心,长为半径作圆,当O与△ABC的边有且只有两个公共点时,DO的取值范围为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为( )
A. ﹣或﹣12B. ﹣或2C. ﹣12或2D. ﹣或﹣12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=ax2+bx+c的顶点为B(–1,3),与x轴的交点A在点(–3,0)和(–2,0)之间,以下结论:①b2–4ac=0;②a+b+c>0;③2a–b=0;④c–a=3.其中正确的有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列条件求二次函数解析式
(1)已知一个二次函数的图象经过了点A(0,﹣1),B(1,0),C(﹣1,2);
(2)已知抛物线顶点P(﹣1,﹣8),且过点A(0,﹣6);
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com