精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-32),B04),C02).

1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的C;平移△ABC,若A的对应点的坐标为(04),画出平移后对应的

2)若将C绕某一点旋转可以得到,请直接写出旋转中心的坐标;

3)在轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.

【答案】1)如下图;(2)();(3)(-20).

【解析】

试题(1)根据网格结构找出点A、B以点C为旋转中心旋转180°的对应点A1、B1的位置,然后与点C顺次连接即可;再根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;
(2)根据中心对称的性质,连接两对对应顶点,交点即为旋转中心,然后写出坐标即可;
(3)根据轴对称确定最短路线问题,找出点A关于x轴的对称点A′的位置,然后连接A′B与x轴的交点即为点P.

试题解析:(1)画出△A1B1C与△A2B2C2如图

(2)旋转中心的坐标为(,-1

(3)点P的坐标为(-2,0)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的顶点为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如下图,则以下结论:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有两个相等的实数根.其中正确结论的个数为( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:

①∠ABC=ADC;

AC与BD相互平分;

AC,BD分别平分四边形ABCD的两组对角;

四边形ABCD的面积S=ACBD.

正确的是 (填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,点开始沿折线的速度运动,点开始沿边以的速度移动,如果点分别从同时出发,当其中一点到达时,另一点也随之停止运动,设运动时间为,当________时,四边形也为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.点开始沿边向点的速度移动,与此同时,点从点开始沿边向点的速度移动.如果分别从同时出发,当点运动到点时,两点停止运动,问:

经过几秒,的面积等于

(2)的面积会等于吗?若会,请求出此时的运动时间;若不会,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ ABC中,AB = AC

(1)如图 1,如果∠BAD = 30°ADBC上的高,AD =AE,则∠EDC =

(2)如图 2,如果∠BAD = 40°ADBC上的高,AD = AE,则∠EDC =

(3)思考:通过以上两题,你发现∠BAD∠EDC之间有什么关系?请用式子表示:

(4)如图 3,如果AD不是BC上的高,AD = AE,是否仍有上述关系?如有,请你写出来,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线

当抛物线的顶点在轴上时,求该抛物线的解析式;

不论取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;

若有两点,且该抛物线与线段始终有交点,请直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小聪遇到这样一个有关角平分线的问题:如图1,在中,平分,求的长.

小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图2).

请回答:(1   三角形.

2的长为   

参考小聪思考问题的方法,解决问题:

3)如图3,已知中,平分.求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),AMN的面积为y(cm2),则y关于x的函数图象是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案